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On-Manifold GMM Registration
Wennie Tabib, Cormac O’Meadhra, and Nathan Michael

Abstract—This paper presents a robust Gaussian Mixture
Model (GMM) registration technique to enable mapping and
navigation in dark, complex, unstructured domains such as caves
and mines. Subterranean environments are often unmapped and
challenged by low-lighting conditions and communication con-
straints. Prior works that leverage direct and image-based tech-
niques with active illumination fail when taking tight turns due to
sensor washout, dense methods are sensitive to initialization, and
state-of-the-art registration methods that leverage probabilistic
models are neither real-time viable nor thoroughly evaluated
with real-world data. The proposed approach minimizes the
squared L2 norm between two distributions through an on-
manifold parameterization of the objective function. The contri-
bution of this paper is a robust, real-time viable distribution-to-
distribution registration methodology that considers all possible
correspondences between mixture components. The approach is
evaluated in a feature-scarce mine, unstructured cave, and on
open-source data of an office environment with both LIDAR and
depth sensors. The results demonstrate superior performance
as compared to the state of the art. Beyond cave and mine
environments, the method readily extends to solving the problem
of registration in cluttered domains.

Index Terms—Localization, range sensing, mining robotics.

I. INTRODUCTION

SUBTERRANEAN environments are challenged by low-
lighting conditions, repetitive structure, and are often

unmapped. For example, of the 4378 documented caves in
Virginia, only 1348 are mapped [24], which compounds the
dangers of cave rescues to extricate injured cavers as no prior
maps exists to understand the structure of the terrain. Sinkholes
are catastrophic and sudden events that turn buildings to rubble
in an instant. Without complete maps, rescue teams must work
with limited information to find survivors [28]. Subterranean
nuclear waste storage facilities become inaccessible to humans
after a radiation leak without risking exposure. However,
deploying robots into these environments to locate the source
of the leak is challenged due to the repetitive nature of the
storage facility [5].

Autonomous robotic mapping in these environments is
predicated on accurate pose estimation. The contribution of
this paper is a methodology to robustly register laser or depth
observations represented as probabilistic generative models
by minimizing the squared L2 norm between the distribu-
tions. Because the GMM is a compact representation of
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Fig. 1: Natural environments, which are the domain of interest, typically have
sparse features, rendering feature based matching difficult. Target (red) and
source (blue-yellow) point clouds are initially misaligned in (a) and the goal
is to align them as in (b). When the pointclouds are represented as GMMs
with fully anisotropic covariances the resulting cost function has the steep and
non-convex form of (c). Converting the anisotropic covariances into isotropic-
planar covariances yields a cost function that is almost completely convex as
shown in (d) and enables the accurate registration shown in (b).

the sensor observation, the cost for considering all possible
correspondences between the mixture components in the two
distributions becomes much more tractable as compared to
operating directly on points. The paper proceeds with related
work in Section II followed by the proposed approach that for-
mulates an objective function to minimize the squared L2 norm
between the two distributions, derives a closed-form gradient
and Hessian, and details the optimization framework to register
the distributions (see Fig. 1). Section IV evaluates the proposed
approach. The conclusion is presented in Section V and the
mathematical derivations for the rotation parameterization and
the full derivation of the gradient and Hessian are included in
Appendices A and B, respectively.

II. RELATED WORK

The state-of-the-art navigation and mapping algorithms can
be segregated into image-based and depth-based pose estima-
tion techniques. Feature-based image processing algorithms
fail in environments that do not enable feature extraction
and matching, particularly, in low-lighting conditions and
in the presence of repetitive structure. Dense methods such
as [19, 22] operate directly on pointclouds, but are typically
more sensitive to initialization.

Direct methods may be leveraged to estimate pose from
high-frame rate depth or RGB-D sensor observations, but
require motions between frames to be small and rely on
the brightness constancy assumption which does not hold in
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Fig. 2: Overview of methodology: (a) Pointclouds taken at two different poses (shown in red and blue) are converted into (b) GMMs with anisotropic
covariances. The covariances are converted to (c) isotropic-planar (isoplanar) and an optimization is run that minimizes the squared L2 norm between the two
distributions. The output of the optimization xopt is used to seed a second optimization with anisotropic covariances. The results are rigid transformation
parameters that align the GMMs (shown in (e)).

subterranean environments [13, 17]. Alismail et al. [1] seek to
overcome the limitations of feature-based and direct methods
by developing a hybrid method that employs bit-plane features
within a direct alignment framework, but the approach fails
in subterranean environments when taking tight turns due to
washout when the light source output is constrained to be very
close to the image sensor.

The Iterative Closest Point (ICP) algorithm [2] computes
point correspondences and identifies the optimal alignment of
corresponding pairs in the least-squares sense. While fast, it is
sensitive to outliers and initialization, and many variants have
been proposed to overcome these limitations [6, 18]. General-
ized ICP [21] increases the robustness of ICP by modeling the
local structure of the data as a disk centered on each point and
normal and matching via a plane-to-plane distance metric. A
significant limitation of standard ICP approaches is the use of
hard correspondences, but while soft correspondence method-
ologies have been shown to yield improved performance, these
methods come at increased computational cost [27]. While
one could argue that downsampling the pointcloud is a viable
method for increasing computational speed, this operation may
result in loss of information [14].

The Normal Distribution Transform (NDT) framework
learns anisotropic multivariate normal distributions over points
assigned to a discrete set of bins in the observed space and
performs registration by minimizing the L2 norm between
two NDT maps [25]. This approach discretizes the space,
which limits the representational power of the distributions
and increases the computational burden of the framework. The
proposed approach is distinct from this work in that the role
of the determinant is explicitly accounted for and all possible
correspondences between the two distributions are considered.

Approaches have been proposed that employ GMMs to
represent pointclouds [8–10, 15]. Alignment is performed by
minimizing a distance metric as in [15], or integrating into
the model learning stage through an expectation-maximization
(EM) framework [8, 10]. EM-based approaches assume that
the pointclouds to be matched are both observations of the
same scene, which is not realistic in practice as measurements
often consist of large non-overlapping regions.

Methods that leverage probabilistic generative models to
register point sets have been demonstrated to be more robust
to outliers and noise [7, 10]. However, state-of-the-art methods
are either not real-time viable [10] or tested on a single scan
with varying rotations, translations and rates of downsampling

so that the data is virtually identical for every test [7].
Prior work has demonstrated the viability of real-time GMM
computation through hardware acceleration [9]. Building on
this work, all measurements are assumed to be represented
by compact anisotropic GMMs and the gap in the state of
art is bridged with a real-time viable registration technique
that is tested on real-world data of subterranean and cluttered
environments.

III. METHODOLOGY

Figure 2 illustrates the proposed approach. First, pointclouds
(Fig. 2a) are converted to full anisotropic GMMs (Fig. 2b). The
mathematical definition of GMMs is provided in Section III-A.
Next, Section III-B formulates an objective function for regis-
tration from the correlation integral that maximizes the overlap
between two distributions. Section III-C derives the closed-
form equations for the gradient and Hessian. Section III-D
details the optimization framework that optimizes first with
GMMs with isoplanar covariances (Fig. 2c) that serves to
smooth the cost function and reduce local minima followed
by a refinement optimization using the original anisotropic
covariances (Fig. 2d) to obtain accurate registration parameters
and align the distributions (Fig. 2e).

A. Preliminaries
A Gaussian Mixture Model (GMM) is a probabilistic model

composed of a weighted combination of M Gaussian densities,
with the form

p(x) =

M∑
m=1

πmN (x|µm,Λm) (1)

Each Gaussian density N (x|µm,Λm) is referred to as a
component of the GMM and parameterized by a mean µm
and covariance Λm. The components are combined through
a set of normalized mixing coefficients {π1, . . . , πm} that
represent the prior probability of selecting the mth component.
The Expectation Maximization (EM) algorithm computes the
GMM parameters by introducing latent correspondences to
factorize the joint likelihood so that closed form maximization
of parameters of individual components is possible.

B. Registration
GMM to GMM registration, commonly referred to as distri-

bution to distribution (D2D) registration, is achieved by align-
ing modeled probability densities. Given two GMMs, G0(x)
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and G1(x), with potentially different numbers of components,
the transformation parameters θ, are sought that minimize the
distance between G0(x) and T (G1(x),θ). G0(x) and G1(x) are
defined as:

G0(x) =
M∑
m

πmN (x|µm,Λm)

G1(x) =
K∑
k

τkN (x|νk,Ωk)

and T (·,θ) is the rigid transformation function consisting of
a rotation R and translation t. A transformed GMM with
parameters {τk,νk,Ωk} is expressed as

T (G1(x),θ) =
K∑
k=1

τkN (x|Rνk + t,RΩkR
T ) (2)

Following the success of D2D alignment for NDT-map [25]
and in the original work demonstrating GMMs for point set
alignment [15], the squared L2 norm is employed as the
measure of distance between the target GMM G0 and the
transformed source GMM T (G1(x),θ). The cost function to
minimize may be written as:

θ∗ = argmin
θ

∫
‖G0(x)− T (G1(x),θ)‖22dx

= argmin
θ

∫ (
‖G0‖22 + ‖T (G1,θ)‖22 − 2G0T (G1,θ)

)
dx

(3)

where dependence on x is omitted for brevity. Eqn. (3) may be
simplified by noting that the first term does not depend on the
transformation parameters θ and that energy in a distribution
(which is given by the second term) is invariant under rigid
transformation. Intuitively, this means that application of the
transformation parameters does not change the shape of the
distribution. Thus, the minimization of the squared L2 distance
corresponds to maximization of the correlation of the two
distributions:

θ∗ = argmax
θ

∫
2G0(x)T (G1(x),θ)dx (4)

The objective function (4) has the same extrema as that of the
Cauchy-Schwarz divergence [16], due to the monotonicity of
the log function. In the case of two GMMs, the correlation
integral of (4) has a closed-form solution given by [16]

θ∗ = argmax
θ

M∑
m=1

K∑
k=1

πmτkN (µm|Rνk + t,Λm +RΩkR
T ) (5)

which may be written as

θ∗ = argmin
θ

−F, (6)

where

F=

M∑
m=1

K∑
k=1

fmk

fmk = πmτk
|Σmk|−1/2

(2π)3/2
exp

(
−

1

2
yTmkΣ

−1
mkymk

)
ymk = µm −Rνk − t

Σmk = Λm +RΩkR
T

(a) (b)

Fig. 3: The non-convexity of the cost function is evident. The cost function
with the determinant (a) exhibits a wider basin of attraction than the cost
function without (b).

The goal is to maximize the correlation, which is an integral
whose value depends on the transformation parameters θ.
Using [15, 16], the correlation integral may be cast as the
minimization problem in (6) that finds the alignment that
maximizes the overlap between the distributions. The optimal
rigid transformation parameters may be solved for by setting
the gradient of (6) to zero. The Hessian contains information
about the local curvature of the function, so it increases the rate
of convergence of the optimization. The gradient and Hessian
are derived in closed-form in Section III-C. An unconstrained
optimization problem is cast that optimizes objective (6) via
a trust-region method (Section III-D).

The cost function is distinct from that of [25], in that the
role of the determinant is explicitly accounted for in the cost
function. That is, fmk becomes

πmτk
1

(2π)3/2
exp

(
−

1

2
yTmkΣ

−1
mkymk

)
(7)

when the determinant is removed. The determinant acts to
increase the weight applied to components that have high
certainty such that these components have greater attractive
forces. The effect of the determinant on the shape of the
cost function is shown in Fig. 3. Retaining the determinant in
the cost function increases the complexity of the expression
derived for both the gradient and the Hessian, however, empir-
ical results suggest that inclusion of the determinant increases
robustness.

The objective (6) is highly non-convex due the the nature of
the GMM, as is demonstrated empirically in Fig. 3. Further-
more, the optimization domain SE(3), which is the product
manifold SO(3) × R3, is non-convex due to the non-convexity
of SO(3). The structure of the manifold can be better cap-
tured by leveraging a minimal axis-angle parameterization that
uniquely defines a rotation through the exponential map. This
reparmeterization enables the use of more straightforward,
unconstrained optimization techniques. Details of the rotation
parameterization may be found in Appendix A.

C. Gradient and Hessian

The gradient on the manifold R3 × SO(3) is derived and
has coordinates ξ = (t,u). For brevity, the partial derivative is
expressed as Rξa = ∂R

∂ξa
. The derivatives Rua and Rubua are

given in Appendix A. For the remaining derivatives, Rta = 0,
tua = 0, tta = ea, ttbta = 0 and both mixed second derivatives
are zero. The gradient is given by

∂F

∂ξa
=

M∑
m=1

K∑
k=1

fmk(d
(a)
mk + q

(a)
mk) (8)
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where

d
(a)
mk = −Tr

{
ΩkR

TΣ−1
mkRξa

}
(9)

q
(a)
mk = yTmkΣ

−1
mk(Rξaνk+tξa )+y

T
mkΣ

−1
mkRΩkR

T
ξa

Σ−1
mkymk (10)

Using the compact representation of the gradient (8), the
Hessian is expressed as

∂2F

∂ξb∂ξa
=

M∑
m=1

K∑
k=1

fmk

[
(d

(a)
mk+q

(a)
mk)(d

(b)
mk+q

(b)
mk)+(D

(ba)
mk +Q

(ba)
mk )

]
(11)

where D(ba)
mk = ∂

∂ξb
d
(a)
mk, Q(ba)

mk = ∂
∂ξb

q
(a)
mk, and d

(b)
mk and q

(b)
mk are

the same as d(a)mk and q
(a)
mk, but refer to elements of ξb instead

of ξa. The expressions are expanded as

D
(ba)
mk = −Tr

{
Ωk

(
RTξbΣ

−1
mkRξa

−RTΣ−1
mkZ

(b)
mkΣ

−1
mkRξa +RTΣ−1

mkRξbξa

)}
(12)

Q
(ba)
mk = −

(
j
(b)T

mk Σ−1
mkj

(a)
mk − y

T
mkΣ

−1
mkZ

(b)
mkΣ

−1
mkj

(a)
mk

+ yTmkΣ
−1
mkH

(ba)
mk − y

T
mkΣ

−1
mkZ

(a)
mkΣ

−1
mkj

(b)
mk

+ yTmkΣ
−1
mkZ

(b)
mkΣ

−1
mkZ

(a)
mkΣ

−1
mkymk

−
1

2
yTmkΣ

−1
mkZ

(ba)
mk Σ−1

mkymk

)
(13)

where

j
(a)
mk = −Rξaνk − tξa

Z
(a)
mk = RξaΩkR

T +RΩkR
T
ξa

H
(ba)
mk =

∂jmka
∂ξb

= −Rξbξaνk

Z
(ba)
mk = RξbξaΩkR

T+RξaΩkR
T
ξb
+RξbΩkR

T
ξa

+RΩkR
T
ξbξa

Please see Appendix B for the detailed derivation of both the
gradient and the Hessian.

D. Optimization Framework

As stated in Section III-B, the cost function to minimize
is highly non-convex, which may result in a poor quality
registration unless the initialization is close to the actual
solution. A technique similar to that of GICP [21] is employed
to smooth the cost function and prevent the optimizer from
becoming trapped in local minima. Segal et al. [21] note
that pointclouds taken from two different positions sample
a two-dimensional manifold in three-dimensional space, so
each measured point only provides a constraint along its
surface normal. When the sampled points are represented as a
probabilistic generative model, the covariance about the mean
is modified to model the high certainty about the surface
normal direction and low certainty along the local plane. The
modified covariance is computed as the eigen decomposition
Λm = UmDmU

T
m and Λm is replaced with

Λm = Um

1 0 0

0 1 0

0 0 ε

UT
m (14)

where ε is a small constant representing the covariance along
the normal. This has the effect of smoothing the cost function

(a) TUM (b) Mine (c) Cave

Fig. 4: (a) An RGB-D dataset of a cluttered office environment and laser
datasets of a (b) mine (Image credit: Near Earth Autonomy) and (c) unstruc-
tured cave environment are employed to evaluate the proposed approach. The
top row of images are from left-to-right a reconstruction of depth observations
from the TUM RGB-D SLAM dataset and benchmark, laser observations of a
mine environment, and Faro scans of the undeveloped cave. The bottom row
consists of images of the environments.

(see Fig. 1d for a representative example). However, this
change in cost function is not guaranteed to preserve the
minimum at the same location. Therefore, the optimization is
run twice: once with the modified isotropic-planar (isoplanar)
covariances specified in [21] to smooth the cost function
followed by a second run with the original cost function seeded
with the results from the first run. The second optimization
quickly converges.

The cost function proposed by Stoyanov et al. [25] to
remove the contribution of the determinant (see (7)) is com-
pared to the proposed approach, called the Isoplanar Hybrid
approach, in Section IV-A.

An unconstrained optimization problem is realized through
the on-manifold parameterization of the objective function (6).
The Riemannian trust-region method with conjugate gradients
is used to optimize the objective, which is implemented in the
MATLAB manifold optimization toolbox, manopt [4].

IV. RESULTS

The selection of the Isoplanar Hybrid approach as the
proposed approach is first motivated by comparing to variants
of the GMM registration in Section IV-A and then by compar-
ing to the state-of-art registration methods, NDT D2D1 [25],
GICP2 [21], and NICP3 [22], in Section IV-B. The performance
is evaluated with three datasets consisting of RGB-D and
Velodyne VLP-16 laser observations illustrated in Fig. 4.

The GMM registration algorithms consider all pairs of
components instead of just the closest pairs as is done in [25].
Preliminary tests that incorporate a dmax parameter analogous
to GICP’s to limit the number of component pairs considered
during registration suggests a considerable increase in speed;
however, the dmax parameter is highly dependent on the
observed environment and correct selection of this parameter
is a challenge in its own right so the timing results are not
reported.

The metrics used to evaluate the proposed method are the
Root Mean Square Error (RMSE) as detailed in [26] and the

1https://github.com/OrebroUniversity/perception oru-release
2https://github.com/PointCloudLibrary/pcl
3https://github.com/yorsh87/nicp
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odometric error between consecutive frames. The RMSE is
defined as the relative pose error at time step i:

Ei :=
(
Q−1
i Qi+1

)−1(
P−1
i Pi+1

)
(15)

RMSE(E1:n) :=

(
1

n− 1

n−1∑
i=1

‖trans(Ei)‖2
)1/2

(16)

where trans(Ei) refers to the translational components of the
relative pose error Ei, the estimated trajectory P1, . . .Pn ∈
SE(3) and the ground truth trajectory Q1, . . . ,Qn ∈ SE(3).
The odometric error is computed as the translation and rotation
error between frames 1 and j where j ∈ [1, n]:

Ej :=
(
Q−1

1 Qj

)−1(
P−1

1 Pj

)
(17)

OE(E1:n) := ‖trans(Ej)‖ (18)

For both RMSE and odometric errors, the rotation errors are
similarly computed.

A. Evaluation of GMM Registration Variants

Two evaluations are conducted that motivate the selection
of the Isoplanar Hybrid approach as the proposed approach.
Each evaluation highlights the strengths and weaknesses of
the GMM registration variants. There are five variations con-
sidered: the m-GMM Isoplanar method leverages the isoplanar
covariances of (14) with cost function (6); the proposed m-
GMM Isoplanar Hybrid approach performs an optimization with
cost function (6) and isoplanar covariances (14) followed by a
refinement optimization using (6) and anisotropic covariances
seeded with the results from the first optimization; the m-GMM
No Det. variant performs a single optimization using the cost
function from (7) and anisotropic covariances; the m-GMM No
Det. Hybrid approach first performs an optimization using the
cost function from (7) and anisotropic covariances followed
by a second optimization with the cost function from (6) and
anisotropic covariances seeded with the results from the first
optimization; and the m-GMM Anisotropic approach performs
a single optimization using the cost function from (6) and
anisotropic covariances. In each case the m stands for the
number of components in the GMMs.

1) TUM Dataset: The first evaluation is performed with a
complete TUM RGB-D SLAM benchmark dataset consisting
of over 2500 depth images shown in Fig. 4a. The RMSE
results are shown in Fig. 5. The Isoplanar approach yields
poorer registration results as compared to the other approaches
because the cost function changes the shape of the covariances
to bias certainty along the direction of the normal, which has
the effect of making the optimization more robust to large pose
differences between consecutive scans but introduces some
error in the final registration results for this dataset where
the difference in pose is small (approximately 1-2 cm and 1-
2 degrees between consecutive scans). Note that the Isoplanar
Hybrid approach overcomes this problem by running a second
optimization with the anisotropic covariances.

2) Mine Dataset: The second evaluation is performed with
more than 300 laser observations from a mine environment
shown in Fig. 4b. The RMS errors are shown in Fig. 6.
The translation and rotation differences between successive
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(a) TUM Translation RMSE
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(b) TUM Rotation RMSE

Fig. 5: RMS errors for translation and rotation for each pair of consecutive
observations in the TUM dataset consisting of more than 2500 depth images.
The Isoplanar Hybrid approach overcomes the poor registration results of
the Isoplanar variant by running a refinement optimization with anisotropic
covariances.
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(a) Mine Frame-to-frame Translation
RMSE
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(b) Mine Frame-to-frame Rotation
RMSE

Fig. 6: RMS errors for translation and rotation for each pair of consecutive
observations in the Mine dataset consisting of more than 300 laser scans.
The Isoplanar approaches have the best performance because biasing the
covariances along the normal direction makes makes the optimization more
robust to large translations and rotations.

observations is much larger in this dataset than the TUM
dataset (20-60 cm and 2-10 degrees, respectively). In this case
the Isoplanar approaches perform best because the effect of
biasing the covariances to have higher certainty in the direction
of the normal is to make the optimization more robust to larger
translations and rotations between successive observations.
The Anisotropic registration is unable to overcome local min-
ima (representative example shown in Fig. 1) which results in
poor registration performance and the approaches that remove
the determinant have a much narrower basin of attraction
(representative example shown in Fig. 3) as compared to the
Isoplanar approaches, which yields an optimization that is
much more sensitive to initialization.

Because the Isoplanar Hybrid registration approach obtains
accurate registration results in both evaluations, it is used to
evaluate against state-of-art registration approaches.

B. Evaluation against State-of-art Methods

The Isoplanar Hybrid GMM approach is compared to NDT
D2D, GICP, and NICP. The cell size of the NDT D2D reg-
istration and Isoplanar Hybrid GMM registration approaches
is varied in the evaluations to determine the cell sizes and
numbers of components that produce the best performance
for each dataset. Varying the dmax parameter of GICP, which
is the maximum matching threshold, does not significantly
affect accuracy or timing performance so the parameter is
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GICP NDT NICP GMM
Dataset (s) (s) (s) (s)

TUM 3.3565 0.0357 0.3703 0.2959
Mine 0.3238 0.0045 0.3754 0.3810
Cave 0.5536 0.0030 0.4904 0.3905

TABLE I: Timing results for each method. The 100-GMM Isoplanar Hybrid
approach remains within reasonable bounds of timing as compared to the state
of the art.

conservatively set to be 100 for all tests. NICP provides
optimized parameters for depth and laser sensors so the
appropriate configuration file is used depending on the sensor
used in the dataset.

Timing results are reported in Table I. All of the tests are
run with a single thread on an Intel i7-6700K CPU with
32GB of RAM. The evaluations assume that GMMs and NDT
maps are pre-computed so only the time taken to register the
distributions is counted. Hardware accelerated methods exist
to create GMMs (e.g., [9, 23]) so the time to create these
distributions is not counted. In addition, the NICP algorithm
operates in image space, so to test the laser pointcloud datasets,
the pointclouds are projected to a spherical 1000×1500 depth
image per the parameters checked into the NICP codebase.
One may note that the reported timing results are much larger
than what is advertised in [22], and the reason for this is this
work operates on the full-resolution 480×640 depth images
to analyze the effectiveness of the registration algorithms,
whereas the images in [22] are 120×160—a factor of 16×
fewer points—which accounts for the difference in timing
results.

1) TUM Dataset: Each method is evaluated with the ap-
proximately 2500 sensor observations from the TUM dataset
shown in Fig. 4a. The RMSE values shown in Fig. 7 are used
to determine the optimal parameters for the NDT cell size and
number of GMM components to use to compute the odometric
error.

Figure 7 illustrates that for the TUM dataset, an NDT
cell size of 0.05 m produces the best performance and 100
components in the Isoplanar Hybrid registration method is
sufficient. The odometric error is shown in Fig. 8 and two
views of the reconstructed paths are shown in Fig. 9. GICP
produces the poorest performance for this dataset, which is
similar to the behavior of the m-GMM Isoplanar variant
from Fig. 5 that also uses the isoplanar covariances without
a refinement optimization. The NDT approach fares slightly
better in terms of translation performance which aligns with
the behavior of the m-GMM No Det. registration variant
from Fig. 5. NICP performs better than the NDT approach
but has about 0.9 m more error in translation and 0.26 rad.
error than the 100-GMM Isoplanar Hybrid approach by the
end of the trajectory.

2) Mine Dataset: The next dataset is the Mine dataset
consisting of more than 300 laser scans, and exhibits signif-
icantly larger rotations and translations as compared to the
TUM dataset (20-60 cm and 2-10 degree differences between
consecutive observations). The RMS errors for each method
are shown in Fig. 10. The NDT with cell size equal to 0.5 m
performs best and 100 components for the GMM registration
are sufficient to outperform the state of the art in terms of
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Fig. 7: The RMS error for (a) translation and (b) rotation demonstrate the
100-GMM Isoplanar Hybrid approach is sufficient to outperform the other
approaches for frame-to-frame RMSE.

0 5 10 15 20 25

Distance traveled (m)

0

1

2

3

4

5

6

7

T
ra

n
s
la

ti
o

n
 e

rr
o

r 
(m

)

GMM

NDT

GICP

NICP

(a) TUM Translation Error

0 5 10 15 20 25

Distance traveled (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

GMM

NDT

GICP

NICP

(b) TUM Rotation Error

Fig. 8: The (a) translation and (b) rotation error statistics are plotted as a
function of distance traveled. The proposed approach has lower odometric
error compared to the state of the art.
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Fig. 9: Two views of the reconstructed paths for the TUM dataset. The
trajectories begin at (0,0,0) and end at the colored dots. Note the 100-GMM
Isoplanar Hybrid approach closely matches the ground truth trajectory as
compared to the other approaches.

translation RMSE. While NDT outperformed the GICP results
for the TUM dataset, GICP outperforms NDT for the mine
dataset as shown in Fig. 11. The estimated trajectories using
each of the methods are shown in Fig. 12.

3) Cave Dataset: The last dataset is the Cave dataset
consisting of more than 350 laser scans from Rapps Cave in
Greenbrier County, WV. The terrain exhibits complex con-
cavities and disjoint objects, which are visible in the bottom
image of Fig. 4c. An aerial robot equipped with a VLP-16
laser scanner was used to obtain data in the cave. A FARO4

laser scanner was used to collect ground truth.
The translation and rotation RMS errors may be found

in Fig. 13, which illustrates that the 100-Isoplanar Hybrid
GMM approach is sufficient for this dataset and NDT D2D
performs best with a cell size of 2 m. The odometric errors

4https://www.faro.com
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Fig. 10: The (a) translation and (b) rotation RMSE for the Mine dataset
are shown. A cell size of 0.5m performs best for the NDT map. The GMM
registration approach performs well with 100 components.
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Fig. 11: The (a) translation and (b) rotation odometric error statistics for
the Mine dataset demonstrate that the 100-GMM Isoplanar Hybrid approach
significantly outperforms the other approaches.
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Fig. 12: Two views of the estimated trajectories for the Mine dataset. The
trajectories begin at (0,0,0) and end at the colored dots. Note the 100-GMM
Isoplanar Hybrid approach closely matches the ground truth trajectory.

are shown in Fig. 14. While the NICP approach initially
does well, the performance deteriorates towards the end of
the trajectory. The 100-GMM Isoplanar Hybrid approach most
closely follows the ground truth trajectory for this dataset. The
trajectories of each of the approaches is shown in Fig. 15.

V. CONCLUSION AND FUTURE WORK

This paper demonstrated a real-time viable method for
registering GMMs in feature-deprived and dark environments
such as mines and caves. The approach minimizes the squared
L2 norm between the two distributions and considers all
possible correspondences between mixture components. The
compactness of the GMM representation is leveraged to de-
crease the runtime of the algorithm. Superior results compared
to the state of the art are obtained in a degraded mine,
unstructured cave, and cluttered office environments. Future
work will consist of leveraging the approach in multi-robot
contexts to enable accurate registration between robots map-
ping subterranean voids.
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Fig. 13: The (a) translation and (b) rotation RMSE for each approach with
the Cave dataset.
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Fig. 14: The (a) translation and (b) rotation error statistics demonstrate that
the 100-GMM Isoplanar Hybrid approach outperforms the other approaches.
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Fig. 15: Two views of the estimated trajectories for the Cave dataset. The
trajectories begin at (0,0,0) and end at the colored dots. Note the 100-GMM
Isoplanar Hybrid approach outperforms the NICP, 2 m NDT Map and GICP
approaches, particularly towards the end of the trajectory.

APPENDIX A
ROTATION PARAMETERIZATION

To remove the need for the explicit SO(3) constraint, the
minimal axis-angle parameterization is employed that uniquely
defines a rotation through the exponential map [3]. In the axis-
angle formulation, a vector u is constructed from a rotation
angle α = |u| and a rotation axis ū = α−1u. Care must be
taken with this representation as α approaches π, since the
cost-function wraps around at this point. In the applications
discussed in this paper, the rotation angles observed are
typically sufficiently small so as to avoid this issue, but in
other applications explicit reasoning about this edge case may
be necessary [12].

The exponential map utilized to reconstruct a rotation matrix
from the axis-angle representation matrix is defined in terms
of the matrix exponential as

R(u) = e[u]× , [u]× =

 0 −u3 u2

u3 0 −u1
−u2 u1 0

 (19)
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The compact form of the Jacobian of the exponential map is
given by [11] from which the Hessian is derived as

Rui =
ui[u]× + [u× (I3 −R)ei]×

‖u‖2
R (20)

Rujui =

[
δiju+ uiej + [ej ]×(I3 −R)ei

− [u]×Rujei

]
×

R

‖u‖2
+Rui

(
RTRuj −

2ujI3

‖u‖2

) (21)

APPENDIX B
DERIVATION OF GRADIENT AND HESSIAN

Starting from the cost function F =
∑
m

∑
k fmk, the terms

d
(a)
mk and q

(a)
mk are derived from d

(a)
mk = |Σmk|1/2 ∂

∂ξa
|Σ−1

mk|
1/2,

which is the partial derivative of the determinant of the preci-
sion matrix and q

(a)
mk = − 1

2
∂
∂ξa
yTmkΣ

−1
mkymk, which is the par-

tial derivative of the scaled Mahalanobis distance in the Gaus-
sian. In order to expand these expressions further, we make use
of the determinant identity det(An) = det(A)n [20, Eq. (23)],
the determinant derivative ∂det(Xk)

∂X
= kdet(Xk)X−T [20, Eq.

(58)], and the matrix chain rule ∂g(U)
∂vi

= Tr

[(
∂g(U)
∂U

)T
∂U
∂vi

]
[20, Eq. (137)]. Beginning with d

(a)
mk

d
(a)
mk = |Σmk|1/2Tr

{(
∂

∂Σmk
|Σ−1/2
mk |

)T ∂Σmk

∂ξa

}
= −

1

2
Tr
{
|Σmk|−1/2

Σ
−1/2
mk (RξaΩkR

T
+RΩkR

T
ξa

)
}

= −Tr
{
Σ

−1/2
mk RξaΩkR

T
}

For q(a)mk we need the derivative of the matrix inverse ∂A−1(x)
∂x

=

−A−1 ∂A
∂x
A−1 [20, Eq. (59)].

q
(a)
mk =

∂

∂ξa
y
T
mkΣ

−1
mkymk

= −yTmkΣ
−1
mk

∂ymk
∂ξa

−
1

2
y
T
mk

∂Σ−1
mk

∂ξa
ymk

= −yTmkΣ
−1
mk

∂ymk
∂ξa

−
1

2
y
T
mkΣ

−1
mkZaΣ

−1
mkymk

Where j
(a)
mk = − ∂R

∂ξa
νk − ∂t

∂ξa
and Z

(a)
mk = ∂

∂ξa
Σmk =

∂
∂ξa
RΩkR

T = RξaΩkR
T + RΩkR

T
ξa . Using these identities

and noting that the second term in q
(a)
mk is of the form

xT (P + P T )x = 2xTPx, we arrive at (10)

q
(a)
mk = y

T
mkΣ

−1
mk(Rξaνk + tξa ) + ymkΣ

−1
mkRΩkR

T
ξa

Σ
−1
mkymk

In order to derive D
(ba)
mk , we require the trace identity

∂Tr(XA)
∂X

= AT [20, Eq. (100)]

D
(ba)
mk = −

∂

∂ξb
Tr
{
ΩkR

T
Σ

−1
mkRξa

}
= −Tr

{(
∂Tr{ΩkRTΣ−1

mkRξa}
∂RTΣ−1

mkRξa

)T
∂RTΣ−1

mkRξa
∂ξb

}
= −Tr

{
Ωk
(
R
T
ξb

Σ
−1
mkRξa −RΣ

−1
mkZbΣ

−1
mkRξa

+RΣ
−1
mkRξbξa

)}
Q

(ba)
mk follows from q

(a)
mk using the same rules employed to

derive q(a)mk.
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