
Real-Time Information-Theoretic Exploration
with Gaussian Mixture Model Maps

Wennie Tabib Kshitij Goel John Yao Mosam Dabhi Curtis Boirum Nathan Michael

Abstract—This paper develops an exploration framework that
leverages Gaussian mixture models (GMMs) for high-fidelity
perceptual modeling and exploits the compactness of the distribu-
tions for information sharing in communications-constrained ap-
plications. State-of-the-art, high-resolution perceptual modeling
techniques do not always consider the implications of transferring
the model across limited bandwidth communications channels,
which is critical for real-time information sharing. To bridge
this gap in the state of the art, this paper presents a system
that compactly represents sensor observations as GMMs and
maintains a local occupancy grid map for a sampling-based
motion planner that maximizes an information-theoretic objective
function. The method is extensively evaluated in long duration
simulations on an embedded PC and deployed to an aerial robot
equipped with a 3D LiDAR. The result is significant memory
efficiency as compared to state-of-the-art techniques.

I. INTRODUCTION

Robotic systems are critical for infrastructure inspection,
search and rescue, and planetary exploration where limited
bandwidth may preclude the transfer of high-fidelity percep-
tual models to human operators. For example, the data rate
of the Mars-to-Earth direct communications channel varies
between 500-32,000 bits per second [1]. On Earth, disaster-
stricken environments often experience degraded or crippled
telecommunications infrastructure across wide areas [2], which
leads to preventable loss of life [3]. Robots that can explore
and transmit high-resolution, memory-efficient maps are able
to facilitate human response teams or receive guidance from
operators to meet mission objectives.

This paper seeks to address the problem of constrained
communications bandwidth robotic exploration by proposing
an autonomous system that leverages compact perceptual
models that generate high-resolution information about the
robot’s surroundings. Depth sensor observations are encoded
as Gaussian Mixture Models (GMMs) and used to maintain
a consistent local occupancy grid map. A motion planner
is designed to select smooth and continuous trajectories that
maximize an information-theoretic objective function.

The contributions of this work are: (1) a method for
real-time occupancy reconstruction from Gaussian Mixture
Models, (2) an information-theoretic exploration system that
leverages the occupancy modeling technique, and (3) extensive
evaluation of the exploration system in simulation and real-
world scenarios using an aerial robot equipped with a 3D laser
scanner. The paper is organized as follows: Section II surveys

This work was supported in part by NASA STTR Grant NNX16CK16C
and industry.

The authors are with The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 15213, USA. {wtabib, kgoel1, johnyao, mdabhi,
cboirum, nmichael}@andrew.cmu.edu

(a) (b)

Fig. 1: (a) An autonomous aerial robot equipped with a 3D LiDAR explores
an outdoor environment. (b) Top-down view of environment being explored.

related work, Sections III, IV and V describe the proposed
methodology, Section VI-A presents simulation results, Sec-
tion VI-B presents field test results, and Section VII concludes
with implications and future work.

II. RELATED WORK

Planetary exploration systems to date have largely left
questions about the cost of transmitting data to operators unad-
dressed. Arora et al. [4] leverage Bayesian networks to create
a mapping between multi-modal sensor data and variables
of interest coupled with a Monte Carlo Tree Search planner
to maximize information gathering with the goal of limiting
operator interaction given the significant delay induced by
interplanetary travel. However, the cost of transmitting data
to enable information sharing with human operators and
planetary scientists is not discussed.

Hahn et al. [5] assume a tele-operated vehicle and develop a
method to identify victims in a search and rescue scenario that
fuses thermal and depth observations. Bandwidth constraints
of the environment representation are not reported in the
analysis of their approach. Papachristos et al. [6] develop
an aerial robot to explore visually degraded, GPS-denied
environments by fusing NIR camera and inertial data and
build a high-resolution map by storing pointclouds, which is
prohibitive to transmit across low-bandwidth communications
infrastructure.

Many approaches leverage voxel-based occupancy modeling
strategies for information-theoretic planning. Charrow et al. [7]
develop a real-time information theoretic planning approach
that maximizes the information gain in the environment by
calculating the mutual information between a sensor observa-
tion and map represented as an occupancy grid. The occupancy
grid map discretizes the environment into 3D voxels and stores
a probability of occupancy for each voxel [8]. The downside of

this map representation is that the memory demands become
explosive as the environment to explore becomes larger or the
desired resolution of the map becomes finer. To overcome this
limitation, this work builds upon prior work by O’Meadhra
et al. [9] that compresses sensor observations as GMMs for the
purpose of occupancy reconstruction. This work extends these
methods by developing real-time local occupancy mapping for
information-theoretic planning.

The Normal Distribution Transform Occupancy Map (NDT-
OM) was developed to overcome some of the limitations of
the occupancy grid map. Saarinen et al. [10] discretize the
environment into voxels in the same way that the occupancy
grid map does, but also encode a Gaussian density into
occupied voxels to better represent the surface. The motivation
for this mapping approach is that because the surface is
better represented, larger voxels may be used. However, for
exploration in large environments, this technique suffers from
the same drawbacks as the occupancy grid map.

Oleynikova et al. [11] develop Voxblox to produce Trun-
cated Signed Distance Fields (TSDFs) from Euclidean Signed
Distance Fields (ESDFs) and demonstrate the results on an
aerial robot. The authors are able to outperform Octomap [12],
which represents occupancy at multiple resolutions via an
octree data structure. Voxblox may be dynamically resized,
but is limited to a fixed-resolution voxel size. On the other
hand, generative models such as GMMs learn a distribution
over points in a sensor observation so that occupancy may be
represented at arbitrary resolution [9].

GMMs have been used for compact perceptual model-
ing [13], occupancy modeling [9], and multi-robot explo-
ration [14]. These models provide smoother surfaces with
higher reconstruction accuracy at a significantly lower mem-
ory footprint [9] than discrete representations. Although
communication-efficient exploration is proposed in [14], real-
time operation is not demonstrated. This paper addresses this
gap in the state of the art by proposing an exploration system
that leverages GMMs for real-time 3D information-theoretic
planning and perceptual modeling on computationally con-
strained platforms.

III. OVERVIEW

The proposed exploration system consists of mapping,
information-theoretic planning, and a monocular visual-inertial
navigation system (Fig. 2). The mathematical preliminaries
of Gaussian mixture models (GMMs) are detailed in Sec-
tion IV-A. Section IV-B develops the local grid mapping
strategy via GMMs used by the planning approach to generate
continuous trajectories that maximize an information-theoretic
objective (Section V). Finally, the visual-inertial navigation
and control subsystems are described in Section VI-B1.

IV. MAPPING

A. Gaussian Mixture Models for Perception

The proposed approach leverages GMMs to compactly en-
code sensor observations for transmission over low-bandwidth
communications channels. The GMM provides a generative

Trajectory Tracker

Pixracer Downward
RGB camera

Infrared ToF
Altimeter

3D LiDAR

Visual-Inertial

Navigation System

Gaussian Mixture

Model Mapping

RPM

Commands

Continuous

Motion Primitives

IMU

RGB Image

Altitude

Pose Estimates

Local Occupancy Map

3D Laser Scans

Actuators

Information-Theoretic

Motion Planner

(250 Hz)

(60 Hz)

(300 Hz)

(10 Hz)
(250 Hz)

(2 - 10 Hz)

(1 Hz)

(200 Hz)

Fig. 2: Overview of the autonomous exploration system presented in this
work. Using pose estimates from a visual-inertial navigation system (Sec-
tion VI-B1) and 3D laser scans, the proposed mapping method (Section IV-A
and Section IV-B) builds a memory-efficient continuous approximate belief
representation of the environment while creating local occupancy grid maps
in real-time. A motion primitives-based information-theoretic planner (Sec-
tion V) uses this local occupancy map to generate snap-continuous forward-arc
motion primitive trajectories that maximize the information gain over time.

model of the sensor observations from which occupancy may
be reconstructed by resampling from the distribution and
raytracing through a local occupancy grid map. Formally, the
GMM is a weighted sum of M Gaussian probability density
functions (PDFs). The probability density of the GMM is
expressed as

p(x|Θ) =

M∑
m=1

πmN (x|µm,Λm)

where Θ = {πm,µm,Λm}Mm=1 compactly represent the
parameters of the GMM. x ∈ RD, πm∈ R1 is a weight such

that
M∑
m=1

πm = 1 and 0 ≤ πm ≤ 1, µm is a mean, and Λm

is a covariance matrix for the mth D-dimensional Gaussian
PDF of the distribution. The multivariate probability density
for x is written as

N (x|µi,Λi) =
|Λi|−1/2

(2π)D/2
exp

(
− 1

2
(x− µi)TΛ−1i (x− µi)

)
.

Let Zt = {z1t , . . . ,znt , . . . ,zNt } be a depth sensor obser-
vation consisting of N points, znt ∈ R3, taken at time t.
Estimating optimal GMM parameters Θ remains an open area
of research [15]. This work employs the Expectation Max-
imization (EM) algorithm to solve the maximum-likelihood
parameter estimation problem, which is guaranteed to find a
local maximum of the log likelihood function [16]. To make
the optimization tractable, EM introduces latent variables
C = {cnm} for each point znt and cluster m and iteratively
performs two steps [16, 17, 18].

The E step calculates the expected value of the
complete-data log-likelihood ln p(Zt,C|Θ) with respect to
the unknown variables C given the observed data Zt
and current parameter estimates Θi, which is written as
E[ln p(Zt,C|Θ)|Zt,Θi] [17]. This amounts to evaluating the
posterior probability, βnm, using the current parameter values
Θi (shown in Eq. (1)) [16]

βnm =
πmN (znt |µim,Λ

i
m)

M∑
j=1

πjN (znt |µij ,Λ
i
j)

, (1)

(a) Pointcloud (b) Windowless GMM (c) Occupied Pointcloud (d) Free Pointcloud (e) Windowed GMM (f) Resampled model

Fig. 3: Overview of the approach to transform a sensor observation into a windowed GMM. (a) 3D LiDAR scan from Rapps Cave in Greenbrier, WV. Points
at a distance larger than 5 m are normalized to a unit vector and projected to 5 m (dark blue) to represent free space. Points with a norm less than 5 m
represent occupied space. (b) A 100-component GMM F(x) is learned over the free space points (dark blue) and 100-component GMM G(x) is learned
over the occupied points (red). (c) and (d) illustrate the windowing technique on the occupied and free space points, respectively, by coloring each window
in a different color. The GMM learned with windowed pointcloud data is shown in (e). The windowless GMM produces a tighter fit to the data than the
windowed GMM which is exemplified in the occupied point component closest to the viewer. The resampled model produced by sampling 1× 106 points
from (e) is shown in (f). The number of points to resample is selected for illustration purposes and to highlight that the resampling process yields a map
reconstruction with an arbitrary number of points.

where βnm denotes the responsibility that component m
takes for point znt . The M-step maximizes the expected log-
likelihood using the current responsibilities, βnm, to obtain
updated parameters, Θi+1 via the following:

µi+1
m =

N∑
n=1

βnmz
n
t∑N

n=1 βnm
(2)

Λi+1
m =

N∑
n=1

βnm(znt − µi+1
m)(znt − µi+1

m)T∑N
n=1 βnm

(3)

πi+1
m =

∑N
n=1 βnmxn∑N
n=1 βnm

. (4)

Every iteration of EM is guaranteed to increase the log
likelihood and EM is iterated until a local maximum of the
log likelihood is achieved [16].

The E step is computationally expensive because a respon-
sibility βnm is calculated for each cluster m and point znt ,
which amounts to NM responsibility calculations. In the M
step, every parameter must be updated by iterating over all
N samples in the dataset. In practice, a responsibility matrix
B ∈ RN×M is maintained whose entries consist of the βnm
to estimate the parameters Θ. To reduce the computational
complexity and enable online calculation, an approximation is
made to partition the data into windows, learn a distribution
for each window, and merge the results.

Let Gi(x) be a GMM trained from Ni points in window i
and let Gj(x) be a GMM trained from Nj points in window

j, where
W∑
w=1

Nw = N for sensor observation Zt and W

windows. Gj(x) =
K∑
k=1

τkN (x|νk,Ωk) may be merged into

Gi(x) =
M∑
m=1

πmN (x|µm,Λm) by concatenating the means,

covariances, and weights. However, care must be taken when
merging the weights as they must be renormalized to sum to
1 [19]. The weights are renormalized via Eqs. (5) and (6):

N∗ = Ni +Nj (5)

π∗ =
[
Niπ1

N∗ . . . Niπm

N∗
Njτ1
N∗ . . .

Njτk
N∗

]T
(6)

where m ∈ [1, . . . ,M] and k ∈ [1, . . . ,K] denote the
mixture component in GMMs Gi(x) and Gj(x), respectively.

N∗ ∈ R1 is the sum of the support sizes of Gi(x) and Gj(x).
π∗ ∈ RM+K are the renormalized weights. The means and
covariances are merged by concatenation. Following the work
of O’Meadhra et al. [9], distinct free F(x) and occupied G(x)
GMMs are maintained to compactly represent the density of
points observed in the environment. The process by which
F(x) and G(x) are created is illustrated in Figs. 3a and 3e. Be-
cause the GMM is a generative model, one may sample from
the distribution to generate points associated with the surface
model and reconstruct occupancy (detailed in Section IV-B).
Figure 3 illustrates the model used to compactly represent the
sensor observation.

B. Local Occupancy Grid Map

The occupancy grid map [20] is a probabilistic represen-
tation that discretizes 3D space into finitely many grid cells
m = {m1, ...,m|m|}. Each cell is assumed to be independent
and the probability of occupancy for an individual cell is
denoted as p(mi|X1:t,Z1:t) where X1:t represents all vehicle
states up to and including time t and Z1:t represents the cor-
responding observations. Unobserved grid cells are assigned a
uniform prior of 0.5 and the occupancy value of the grid cell
mi at time t is expressed using log odds notation for numerical
stability.

lt,i , log

(
p(mi|Z1:t,X1:t)

1− p(mi|Z1:t,X1:t)

)
−l0

When a new measurement Zt is obtained, the occupancy value
of cell mi is updated as

lt,i , lt−1,i + L(mi|Zt)

where L(mi|Zt) denotes the inverse sensor model of the robot
and l0 is the prior of occupancy [20].

Instead of storing the occupancy grid map m that represents
occupancy for the entire environment viewed since the start
of exploration onboard the vehicle, a local occupancy grid
map m̄t is maintained centered around the robot’s pose Xt.
The local occupancy grid map moves with the robot, so
when regions of the environment are revisited, occupancy
must be reconstructed from the surface models G(x) and
F(x). To reconstruct occupancy at time t + 1 given m̄t,
the set difference of the bounding boxes bt and bt+1 for m̄t

(a) (b) (c) (d)

Fig. 4: Overview of the method by which occupancy is reconstructed (a) The
blue bounding box bt+1 is centered around Xt+1 and red bounding box bt
is centered at Xt. (b) illustrates the novel bounding boxes in solid magenta,
teal, and yellow colors that represent the set difference bt+1 \ bt. (c) Given
a sensor origin shown as a triad, resampled pointcloud shown in Fig. 3f, and
novel bounding box shown in yellow, each ray from an endpoint to the sensor
origin is tested to determine if an intersection with the bounding box occurs.
The endpoints of rays that intersect the bounding box are shown in red. (d)
illustrates how the bounding box occupancy values are updated. Endpoints
inside the yellow volume update cells with an occupied value. All other cells
along the ray (shown in blue) are updated to be free.

and mt+1, respectively, are used to compute at most three
non-overlapping bounding boxes (see Figs. 4a and 4b for
example). The intersection of the bounding boxes remains up-
to-date, but the occupancy of the novel bounding boxes must
be reconstructed using the surface models G(x) and F(x).
Raytracing is an expensive operation [21], so time is saved
by removing voxels at the intersection of bt and bt+1 from
consideration.

The local occupancy grid map at time t + 1, m̄t+1, is
initialized by copying the voxels in local grid m̄t at the
intersection of bt+1 and bt. In practice, the time to copy the
local occupancy grid map is very low (on the order of a few
tens of milliseconds) as compared to the cost of raytracing
through the grid. In order to identify the GMM components
that intersect the bounding boxes, a KDTree [22] stores the
means of the densities. A radius equal to twice the sensor’s
max range is used to identify the components that could
affect the occupancy value of the cells in the bounding box.
A ray-bounding box intersection algorithm [23] checks for
intersections between the bounding box and the ray from
the sensor origin to density mean. Densities that intersect
the bounding box are extracted into local submaps Ḡ(x) and
F̄(x). Points are sampled from each distribution and raytraced
to their corresponding sensor origin to update the local grid
map (example shown in Figs. 4c and 4d).

As the number of mixture components in the distribution
increases over time in one region, updating the occupancy be-
comes increasingly expensive as the number of points needed
to resample and raytrace increases. To limit this potentially
unbounded number of points, a small, fixed-size bounding box
around the current pose with half-lengths hx, hy , and hz is
used to determine if a prior observation was made within the
confines of the bounding box. This bounding box approach
works for sensors that have a 360◦ field of view such as the
3D LiDAR used in this work, but does not readily extend to
depth sensors with smaller fields of view. If a prior observation
was made within the bounding box, the current observation,
Zt is not stored as a GMM.

V. PLANNING FOR EXPLORATION

The planning framework consists of action generation and
action selection. Action generation (detailed in Section V-A)
refers to the design of candidate actions for the planner,
while action selection in the exploration context refers to the
planning policy that selects safe, feasible trajectories to mini-
mize the uncertainty of the map over time (see Sections V-B
and V-C).

A. Action Generation

Accurate position control of multirotors presumes continuity
in supplied references up to high-order derivatives of posi-
tion [24]. Actions that satisfy continuity requirements must be
computable in real-time. This paper utilizes forward arc prim-
itives for trajectory representation, first introduced by Yang
et al. [25], for smooth and continuous teleoperation of multiro-
tors. These primitives are generated via forward propagation of
unicycle kinematics with higher-order endpoint constraints and
have been successfully demonstrated in high-speed multirotor
exploration and teleoperation scenarios [26, 27]. What follows
is a brief overview of the concepts required to generate these
motion primitives. For further detail please refer to [25, 26].
For the differentially-flat multirotor state at time t, ξt denote
the action parameterization as a = [vx, vz, ω] where vx and vz
are velocities in the body frame in the xB and zB directions,
respectively, and ω is the body frame angular rate about zB
axis. Actions are discretized using the user-specified maximum
velocity bounds in xB−yB plane (ω variation, Nω primitives)
and zB plane (vz variation, Nz primitives) to obtain a motion
primitive library (MPL) Γξt

given by (Figs. 5a and 5b):

Γξt
= {γjkξt

| j ∈ [1, Nω], k ∈ [1, Nz], |v| ≤ Vmax, |ω| ≤ Ωmax} (7)

where |v| is the norm of vx and vz, and Vmax and Ωmax

are user-specified bounds on linear and angular velocities,
respectively.

For a given action discretization, motion primitive γjkξt
is

generated as an 8th order polynomial in time using start-
and end-point velocities, keeping position unconstrained. End-
point velocity is obtained by forward propagating a unicycle
kinematics model using the current state, maximum duration
of the motion primitive (τ), and the available action parame-
terization. Higher-order derivatives from acceleration to snap
are constrained to zero at endpoints:

ξ̇τ = [vx cos θ, vx sin θ, vz, ω]

ξ(n)τ = 0 for n = 2, 3, 4
(8)

where {.}(n) denotes the nth time derivative.
For each MPL Γξt

, an additional MPL containing stopping
trajectories at any ξt can be sampled by fixing ξ̇τ = 0
(Γstop

ξt
, Fig. 5a). These stopping trajectories are appended to

the motion primitives in Γξt
at a timestep one planning round

away from the starting time. These actions ensure safety if
the planner fails to compute an optimal action, as described
in Section V-C. The final action space Xact available for the

(a) ω variation (b) vz variation (c) Frontier Distance Field

Fig. 5: Forward-arc motion primitives from the multirotor state ξt [26]
are obtained after varying yaw rate (a) and vertical velocity (b). Stopping
trajectories γstop

ξt
are always computed for each primitive (green, dashed) to

ensure safety. An explored local occupancy map is used to construct a distance
field for frontiers (c) [14], which enables computation of a global reward as
detailed in Section V-B.

MPL
ID

Velocity and
Duration Direction Nω Nz Nprim

1 vx, τ xB 3 5 15
2 vx, 2τ xB 3 5 15
3 vx, τ −xB 3 5 15
4 vx, 2τ −xB 3 5 15
5 vz zB 1 5 5

TABLE I: Discretization used to construct action space Xact for the simulation
and hardware experiments. Total number of primitives for a MPL are denoted
by Nprim = Nω ·Nz. Base duration τ was kept 3 s for all experiments.

motion planner is composed of the MPLs shown in Table I 1.
The total number of actions available in this configuration of
MPLs is chosen such that computation of rewards, described
later in Section V-B, is real-time feasible.

B. Information-Theoretic Objective

The action selection policy uses an information-theoretic
objective to maximize the information gain over time. The
choice of this objective is motivated by computational feasi-
bility onboard a compute-constrained platform. Charrow et al.
[7] show that Cauchy-Schwarz Quadratic Mutual Information
(CSQMI) is a computationally efficient alternative to the
Shannon mutual information.

To minimize redundant computation, CSQMI is computed
only at the end point of the primitive γξt

. In the planner, this
metric is used to measure the information gain a candidate
action will return locally, however, this design may result in
myopic decision-making and only reason locally. Therefore, an
additional global distribution of information is incorporated via
frontiers [28]. This global reward, denoted by Vγ , is calculated
based on the change in distance towards a frontier along a
candidate action. Using the node state ξ0, endpoint state ξτ ,
and a distance field constructed based on the position of the
frontiers (see Fig. 5c), this reward can be calculated as Vγ =
d(ξ0)−d(ξτ), where d(ξt) denotes the distance to the nearest
voxel in the distance field from state ξt [14].

1This design is dependent on the sensor model and SWaP constraints of
the aerial robot. We follow the analysis presented in [27] for the selection of
these design parameters.

Algorithm 1 Overview of Action Selection for Exploration
1: input: Xact, Xfree
2: output: γ∗ξt

. best action
3: for Γξt

∈ Xact do
4: for γξt

∈ Γξt
do

5: feasible ← SAFETYCHECK(γξt
, γstop

ξt
, Xfree)

6: if feasible then
7: Iγ ← INFORMATIONREWARD(γξt

)
8: Vγ ← FRONTIERDISTANCEREWARD(γξt

)
9: else

10: Iγ ← 0.0, Vγ ← 0.0

11: return γ∗ξt
← arg max

γξt∈Xact

[Iγ + Vγ]

C. Action Selection

Using the rewards described in the preceding section, the
objective for the motion planner is defined as follows [27, 14]:

arg max
γξt

Iγ + αVγ

s.t. γξt
∈ Xact

(9)

where α is a weight that adjusts the contribution of the frontier
distance reward. As stated earlier, the goal is to maximize
this reward function in real-time on a compute-constrained
aerial platform. Previous information-theoretic approaches that
construct a tree and use a finite-horizon planner either do not
use a global heuristic [29] or are not known to be amenable
for operation on compute-constrained platforms [14]. Keeping
real-time operation as a key goal in this work, a single-step
planner is used with the action space Xact consisting of motion
primitives of varying duration (see Table I). Due to this design
of candidate actions, the planner is able to compute rewards
over candidate actions further into the explored map from
the current position. This way, even in a single-step planning
formulation, longer duration candidate actions provide a longer
lookahead than the case when all candidate actions are of the
same duration (see Table I).

The action selection procedure is detailed in Algorithm 1.
For every candidate action γξt

in the action space Xact, a safety
check procedure is performed to ensure that this candidate and
the associated stopping action (γstop

ξt
) are dynamically feasible

and lie within free space Xfree (Line 5). The free space check
is performed using a Euclidean distance field created from
locations of occupied and unknown spaces in the robot’s local
map given a fixed collision radius [30]. Checking that the
stopping action is also feasible ensures that the planner never
visits an inevitable collision state, which is essential for safe
operation, as shown in [31]. If the action is feasible, the local
information reward (Iγ , Line 7) and frontier distance reward
(Vγ , Line 8) are determined as described in Section V-B. The
planner then returns the action with the best overall reward
(Line 11).

VI. EXPERIMENTAL DESIGN AND RESULTS

This section details the experimental design to validate the
proposed approach2. Results are shown for 25 hours of real-
time simulation trials in unstructured, 3D rich environments,
as well as for field test experiments where the approach is
deployed on hardware. The following shorthand is introduced
for this section only: MCG will refer to the Monte Carlo
GMM mapping approach and OG mapping will refer to the
Occupancy Grid mapping approach. The mapping and plan-
ning software is run on an embedded Gigabyte Brix 6500U
with four cores. The simulation computer has 8GB RAM and
the hardware computer has 16GB RAM. All other technical
specifications are identical for the simulation and hardware
setups.

All simulation and hardware experiments use 10 windows
each with 10 mixture components for the occupied- and free-
space GMMs (200 mixture components total) with hx = hy =
2 m and hz = 1 m. The LiDAR has a max range of 5.0 m and
operates at 10 Hz for both simulation and hardware. The local
occupancy grid maps for both MCG and OG mapping span
20 m×20 m×12 m at a 0.2 m resolution. To calculate memory
requirements for the OG mapping approach, the incremental
OG map is transmitted as a changeset pointcloud where each
point consists of 4 floating point numbers: {x, y, z, logodds}.
The changeset is computed after insertion of every pointcloud
and a floating point number is assumed to be 4 bytes, or 32
bits. For the MCG approach, the cumulative data transferred
is computed by summing the cost of transmitted GMMs.
Each mixture component is transmitted as 10 floating point
numbers: 6 numbers for the covariance matrix (because the
covariance matrix is symmetric), three numbers for the mean,
and one number for the mixture component weight. One
additional number is also stored per GMM that represents the
number of points from which the GMM was learned.

Before discussing the results of the exploration approaches,
the choice of the windowing strategy presented in Sec-
tion IV-A is analyzed for reconstruction accuracy. Fig. 6
employs the Area under ROC Curve (AUC) to evaluate the
accuracy of the occupancy reconstruction using the windowed
and windowless GMM approaches. Ground truth probabilities
for the occupancy grid map are computed by raytracing the
sensor observation through a traditional occupancy grid map
and updating the probabilities of occupancy via the inverse
sensor model.

Given the pointcloud in Fig. 3a consisting of N points,
the No occupied space points shown in colors varying from
red to green are separated into 10 windows of points (shown
in Fig. 3c). For each window i ∈ [1, . . . , 10], a GMM Gi(x)
consisting of 10 mixture components is learned and merged
into a single GMM G(x) consisting of a total of 100 mixture
components (shown in red in Fig. 3e). The same process
is repeated to generate a free space GMM F(x) with free
space points (illustrated in blue in Fig. 3e). The occupancy

2Video of the simulation and hardware experiments may be found at https:
//youtu.be/-XADDZa4J0Y

100 150 200 250 300

number of GMM components

0.5

0.6

0.7

0.8

0.9

1

A
U

C

0.4m no window

0.4m window

0.2m no window

0.2m window

0.1m no window

0.1m window

Fig. 6: The quality of reconstruction when opting for the windowed strategy
(dashed lines) shown in Fig. 3e as opposed to learning a distribution on all of
the data (solid lines) as in Fig. 3b is presented. The effect of partitioning data
into 10 windows, learning a distribution on each of the windows, and merging
the result does not significantly reduce the quality of the reconstruction. The
gains in speed are significant enough to motivate deploying the windowing
strategy for real-time operations.

is reconstructed by sampling and raytracing No points from
G(x) and Nf points from F(x) such that N = No + Nf
through an occupancy grid map. Figure 6 illustrates the oc-
cupancy reconstruction accuracy for varying cell sizes (0.1 m,
0.2 m, and 0.4 m). All simulation and hardware experiments
in this chapter use 0.2 m voxel sizes. The windowing approach
results in a 1.4% performance decrease and a 10× speed
up in calculation (1.22 s for the windowless approach vs.
0.12 s for the windowed approach) for 100-component G(x)
and 100-component F(x), reducing computation time from
seconds to milliseconds. Exploiting the spatial locality through
windowing reduces the computational complexity associated
with learning the distribution. For example, the responsibility
matrix learned on all of the occupied data is of size No ×M
but each windowed GMM has a responsibility matrix of size
No

10 ×
M
10 .

A. Simulation Design and Experiments

1) Simulation Setup: The proposed exploration strategy is
evaluated with 60 real-time simulation trials over approxi-
mately 25 hours in a 30 m × 40 m × 6 m environment con-
structed from colorized FARO3 pointclouds of Rapps Cave,
located in Greenbrier, West Virginia (see Fig. 8a). In each
simulation, the multirotor robot begins exploration from one
of three pre-determined starting positions and explores for
1500 s. This end time for the exploration experiments is set
empirically, based on the total time required to fully explore
the cave environment. Note that ground truth state estimates
are used for these simulation experiments, while the hardware
experiments detailed in Section VI-B use a visual-inertial
odometry estimator (see Section VI-B1).

2) Results: Map entropy reduction over time is used to
compare exploration performance of the MCG and OG ap-
proaches over 30 simulation trials (see Fig. 7a). Map entropy is
measured from a global occupancy grid map that is maintained
separately from the simulated robot’s onboard map [32].
The simulation trials demonstrate that MCG achieves similar
performance as OG, which indicates that the approximations

3A FARO is a survey grade 3D laser that emits pointclouds with color.
https://www.faro.com/

0 500 1000 1500

Time (s)

0

1

2

3

4

5

M
a

p
 E

n
tr

o
p

y
 (

b
it
s
) 10

5

Occupancy Grid

Monte Carlo GMM

(a) Map Entropy (b) Map Entropy (c) Starting Positions

0 500 1000 1500

Time (s)

10
-2

10
0

10
2

C
u
m

.
D

a
ta

 T
ra

n
s
f.
 (

M
B

)

Occupancy Grid
Monte Carlo GMM

(d)

Fig. 7: Exploration statistics for simulation experiments. (a) Map entropy over time for 30 trials, (b) mean map entropy over time for each method, and (c)
three different starting positions (10 trials per starting position per method). Although both methods achieve similar entropy reduction, MCG uses significantly
less memory according to the average cumulative data transferred shown in (d). The total amount of transmitted map data after 1500 s is 1.3 MB for MCG,
204 MB for OG, and 4.5 GB (not shown) for raw pointclouds. The maximum variance for the MCG approach is 4.2× 10−3 MB2 and 1.2× 102 MB2 for
the OG approach. The proposed MCG method represents a decrease of two orders of magnitude as compared to the OG method.

(a) Simulated Cave Environment (b) Resulting GMM after 1500 seconds (c) Resampled map from GMM (d) Dense voxel map after 1500 sec-
onds

Fig. 8: Environment used for simulation experiments, shown in (a), is based on a real cave environment in West Virginia. After 1500 seconds of autonomous
exploration, the resulting MCG map (b) is densely resampled to 10 million points to obtain the reconstruction shown in (c). The output of the OG mapping
strategy consists of 50, 398 voxels and is shown in (d). Both mapping strategies leverage voxels with 20 cm resolution. (c) and (d) are colored according to
z-height.

made by the former enables real-time performance without
compromising exploration or map reconstruction quality.

Figure 7d depicts the cumulative amount of data that must
be transferred to reproduce the OG and MCG maps remotely.
After 1500 s, transferring the MCG map requires 1.3 MB as
compared to 204 MB to incrementally transfer the OG map
and 4.5 GB to transfer the raw pointcloud data. The MCG
approach significantly outperforms the other approaches in
terms of cumulative data transfer requirements.

A representative example of the reconstructed GMM map
for one trial from Fig. 7b is shown in Fig. 8b. Resampling one
million points from this distribution yields the map shown
in Fig. 8c. Note that the MCG reconstruction is smoother
and has a higher fidelity than the OG reconstruction because
the generative model used by the former does not assume
independence between voxels.

B. Hardware Design and Experiments

A 6.7 kg aerial robot (see Fig. 9b) equipped with a
downward-facing global shutter camera, IMU, and 3D LiDAR
is used to conduct field experiments.

1) Visual-Inertial Navigation and Control: State estimates
are computed from IMU and downward facing camera obser-
vations via VINS-Mono [33], a tightly-coupled visual-inertial
odometry framework that jointly optimizes vehicle motion,
feature locations, camera time delay, and IMU biases over a
sliding window of monocular images and pre-integrated IMU

measurements. An auxiliary state estimator runs during takeoff
to provide smooth odometry when the vehicle has not yet
experienced sufficient motion excitation for VINS-Mono to
initialize. The auxiliary state estimator is an unscented Kalman
filter that fuses downward rangefinder altitude, downward op-
tical flow, and IMU observations to estimate vehicle odometry.
The loop closure functionality of VINS-Mono is disabled
to avoid having relocalization-induced discontinuities in the
trajectory estimate, which would have significant implications
for occupancy mapping and is left as future work.

For accurate trajectory tracking, a cascaded Proportional-
Derivative (PD) controller is used with a nonlinear Luenberger
observer to compensate for external acceleration and torque
disturbances acting on the system [34]. To improve trajectory
tracking, the controller uses angular feedforward velocity and
acceleration terms computed from jerk and snap references
sampled from the reference trajectory’s 8th order polynomial
(Fig. 2). For the one minute flight shown in Fig. 9, the vehicle
traveled a total distance of 28 m and experienced about 2 m
position drift and 17◦ heading drift.

Additionally, a state machine enables the user to trigger
transitions between the following modes of flight operation:
(1) take-off, (2) hover, (3) tele-operation, (4) autonomous
exploration, and (5) landing. The results presented in the next
section all pertain to the autonomous exploration mode.

2) Results: Four experimental trials are conducted and
evaluated outdoors in inclement weather with duration of

(a) Robot trajectory (b) Aerial robot with 3D LiDAR (c) GMM Map constructed during flight

Fig. 9: Experimental setup for hardware trials. (a) Test site for outdoor exploration experiments with robot trajectory highlighted in red. (b) Hexrotor aerial
robot used in field tests. (c) Top-down view of the GMM map (blue) constructed during the 60 s flight and the estimated trajectory (red).

0 10 20 30 40 50

Time (s)

0

2

4

6

8

10

12

M
a
p
 E

n
tr

o
p
y
 (

b
it
s
)

10
4

Occupancy Grid Run 1

Occupancy Grid Run 2

Monte Carlo GMM Run 1

Monte Carlo GMM Run 2

(a)

0 10 20 30 40 50

Time (s)

10
-2

10
0

10
2

C
u
m

.
D

a
ta

 T
ra

n
s
f.
 (

M
B

) Occupancy Grid

Monte Carlo GMM

(b)

0 10 20 30 40 50

Time (s)

10
4

10
5

10
6

D
a
ta

 T
ra

n
s
m

is
s
io

n
 (

b
it
s
/s

)

Earth-to-Mars Upper Bound Bit Rate

Occupancy Grid Run 1

Occupancy Grid Run 2

Monte Carlo GMM Run 1

Monte Carlo GMM Run 2

(c)

Fig. 10: Exploration statistics for hardware experiments. (a) illustrates the map entropy reduction for two trials of each approach. (b) represents the average
cumulative data transferred at a given time in a semi-logarithmic plot where the vertical axis is logarithmic labeled with successive powers of 10. The maximum
variance is 2.9× 10−5 MB2 and 7.2 MB2 for the MCG and OG approaches, respectively. The total amount of data transferred at the end of each hardware
trial on average is approximately 78 kB for the MCG mapping approach, 9.7 MB for the OG approach, and 154 MB when transmitting raw pointclouds (not
shown). (c) illustrates the bit rate for each approach in a semi-logarithmic plot where the vertical axis is logarithmic labeled with successive powers of 10.
The communications bandwidth required for the MCG approach is just under the upper bound on the available Earth-to-Mars bit rate.

50 s. This duration is chosen keeping in mind the safety
constraints imposed on the operation of the multirotor due
to degraded battery performance in inclement weather. Given
that re-localization is not enabled in state estimation, the pose
estimates drift over time. To compensate for this in the analysis
of exploration quality, raw sensor observations are logged
onboard and post-processed to estimate ground truth poses
using a FARO ground truth map (shown in Fig. 1b). Ground
truth estimates are computed by manually aligning the first
LiDAR sensor observation with the FARO map to obtain an
initial pose estimate TfZ1

∈ SE(3), where f denotes the
FARO frame and Z1 denotes the sensor frame of the first
LiDAR observation. Successive LiDAR observations are reg-
istered using GICP [35] to estimate TZtZt+1

∈ SE(3) and the
transform TfZtTZtZt+1 is used to seed the GICP registration
between the sensor observation at time t + 1 and the FARO
map. The ground truth pose estimates are used to provide a
fair comparison between the two exploration approaches and
generate the map entropy reduction plots shown in Fig. 10a.
These plots illustrate almost equivalent performance between
the MCG and OG mapping approaches, however, Fig. 10b
demonstrates the MCG approach requires 100× less memory
as compared to the OG approach. Fig. 10c illustrates the
reduction in the communication bandwidth required by the

MCG approach compared to the OG approach, which brings
the former just under the upper bound on Earth-to-Mars bit
rate [1].

VII. CONCLUSIONS

This paper presented a method of high-fidelity percep-
tual modeling that is amenable to transmission across low-
bandwidth communications channels. In analyzing the results
of the hardware trials in the context of the Mars-to-Earth
lowest communications bit rate (500 bits per second), it would
take almost 30 days to transmit the raw pointcloud data, 45
hours to transmit the occupancy grid map incrementally, and
21 minutes to transmit the GMM map [1]. At the highest bit
rate of 32,000 bits per second, those numbers are changed to
approximately 0.5 days, 0.7 hours, and 20 seconds, respec-
tively. This mapping capability is an enabling technology for
search and rescue, planetary exploration, and tactical opera-
tions where humans and robots must share information in real-
time. Future work will consist of introducing re-localization
strategies to curb drift over long duration flights.

VIII. ACKNOWLEDGMENTS

The authors thank Xuning Yang for fruitful discussions
about motion primitives-based planning and Aditya Dhawale
for feedback on this manuscript.

REFERENCES

[1] (2019) Mars science laboratory data rates/returns.
[Online]. Available: https://marsmobile.jpl.nasa.gov/msl/
mission/communicationwithearth/data/

[2] V. H. Cid, A. R. Mitz, and S. J. Arnesen, “Keeping com-
munications flowing during large-scale disasters: leverag-
ing amateur radio innovations for disaster medicine,” Dis-
aster medicine and public health preparedness, vol. 12,
no. 2, pp. 257–264, 2018.

[3] A. M. Townsend and M. L. Moss, Tellecommunications
Infrastructure in Disasters: Preparing Cities for Crisis
Communication. Robert F. Wagner Graduate School of
Public Service, New York University, 2005.

[4] A. Arora, P. M. Furlong, R. Fitch, S. Sukkarieh, and
T. Fong, “Multi-modal active perception for informa-
tion gathering in science missions,” arXiv preprint
arXiv:1712.09716, 2017.

[5] R. Hahn, D. Lang, M. Häselich, and D. Paulus, “Heat
mapping for improved victim detection,” in Safety, Se-
curity, and Rescue Robotics (SSRR), 2011 IEEE Interna-
tional Symposium on. IEEE, 2011, pp. 116–121.

[6] C. Papachristos, S. Khattak, and K. Alexis, “Autonomous
exploration of visually-degraded environments using
aerial robots,” in Unmanned Aircraft Systems (ICUAS),
2017 International Conference on. IEEE, 2017, pp. 775–
780.

[7] B. Charrow, S. Liu, V. Kumar, and N. Michael,
“Information-theoretic mapping using Cauchy-Schwarz
quadratic mutual information,” in Proc. of the IEEE Intl.
Conf. on Robot. and Autom., Seattle, WA, May 2015.

[8] A. Elfes, “Using occupancy grids for mobile robot per-
ception and navigation,” IEEE Computer Society, vol. 22,
no. 6, pp. 46–57, 1989.

[9] C. O’Meadhra, W. Tabib, and N. Michael, “Variable
resolution occupancy mapping using Gaussian mixture
models,” IEEE Robotics and Automation Letters, p. 1,
2018, early access.

[10] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala,
and A. J. Lilienthal, “Normal distributions transform
occupancy maps: Application to large-scale online 3d
mapping,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp.
2233–2238.

[11] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and
J. Nieto, “Voxblox: Incremental 3d euclidean signed
distance fields for on-board mav planning,” in Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ Interna-
tional Conference on. IEEE, 2017, pp. 1366–1373.

[12] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “Octomap: An efficient probabilistic
3d mapping framework based on octrees,” Autonomous
Robots, vol. 34, no. 3, pp. 189–206, 2013.

[13] S. Srivastava and N. Michael, “Efficient, multifidelity
perceptual representations via hierarchical gaussian mix-
ture models,” IEEE Transactions on Robotics, 2018.

[14] M. Corah, C. OMeadhra, K. Goel, and N. Michael,
“Communication-efficient planning and mapping for
multi-robot exploration in large environments,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1715–
1721, April 2019.

[15] R. Hosseini and S. Sra, “An alternative to em for gaussian
mixture models: Batch and stochastic riemannian opti-
mization,” Mathematical Programming, pp. 1–37, 2017.

[16] C. Bishop, Pattern Recognition and Machine Learning.
New York: Springer-Verlag New York, 2007.

[17] J. A. Bilmes et al., “A gentle tutorial of the em algorithm
and its application to parameter estimation for gaussian
mixture and hidden markov models,” International Com-
puter Science Institute, vol. 4, no. 510, p. 126, 1998.

[18] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz,
“Mlmd: Maximum likelihood mixture decoupling for fast
and accurate point cloud registration,” in 2015 Interna-
tional Conference on 3D Vision (3DV). IEEE, 2015, pp.
241–249.

[19] S. Srivastava, “Efficient, multi-fidelity perceptual rep-
resentations via hierarchical gaussian mixture models,”
Master’s thesis, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh PA, August 2017.

[20] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics.
MIT press, 2005.

[21] J. Amanatides, A. Woo et al., “A fast voxel traversal
algorithm for ray tracing,” in Eurographics, vol. 87, no. 3,
1987, pp. 3–10.

[22] J. L. Blanco and P. K. Rai, “nanoflann: a C++ header-
only fork of FLANN, a library for nearest neigh-
bor (NN) with kd-trees,” https://github.com/jlblancoc/
nanoflann, 2014.

[23] A. Williams, S. Barrus, R. K. Morley, and P. Shirley,
“An efficient and robust ray-box intersection algorithm,”
in ACM SIGGRAPH 2005 Courses. ACM, 2005, p. 9.

[24] D. Mellinger and V. Kumar, “Minimum snap trajectory
generation and control for quadrotors,” in Proc. of the
IEEE Intl. Conf. on Robot. and Autom., Shanghai, China,
May 2011.

[25] X. Yang, K. Sreenath, and N. Michael, “A framework for
efficient teleoperation via online adaptation,” in Robotics
and Automation (ICRA), 2017 IEEE International Con-
ference on. IEEE, 2017, pp. 5948–5953.

[26] A. Spitzer, X. Yang, J. Yao, A. Dhawale, K. Goel,
M. Dabhi, M. Collins, C. Boirum, and N. Michael,
“Fast and agile vision-based flight with teleoperation and
collision avoidance on a multirotor,” in Proc. of the Intl.
Sym. on Exp. Robot. Buenos Aires, Argentina: Springer,
2018, to be published.

[27] K. Goel, M. Corah, and N. Michael, “Fast exploration
using multirotors: Analysis, planning, and experimenta-
tion,” The Robotics Institute, Carnegie Mellon Univer-
sity, Tech. Rep. CMU-RI-TR-19-03, 2019.

[28] B. Yamauchi, “A frontier-based approach for autonomous
exploration,” in Proc. of the Intl. Sym. on Comput. Intell.
in Robot. and Autom., Monterey, CA, Jul. 1997.

[29] W. Tabib, M. Corah, N. Michael, and R. Whittaker,
“Computationally efficient information-theoretic explo-
ration of pits and caves,” in Proc. of the IEEE/RSJ Intl.
Conf. on Intell. Robots and Syst., Daejeon, Korea, Oct.
2016.

[30] M. Corah and N. Michael, “Distributed matroid-
constrained submodular maximization for multi-robot
exploration: theory and practice,” Auton. Robots, 2018.

[31] L. Janson, T. Hu, and M. Pavone, “Safe motion planning
in unknown environments: Optimality benchmarks and
tractable policies,” in Proc. of Robot.: Sci. and Syst.,
Pittsburgh, PA, Jul. 2018.

[32] T. M. Cover and J. A. Thomas, Elements of information
theory. John Wiley & Sons, 2012.

[33] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and
versatile monocular visual-inertial state estimator,” IEEE
Trans. Robotics, vol. 34, no. 4, pp. 1004–1020, August
2018.

[34] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar,
“The grasp multiple micro-uav testbed,” in IEEE Robot.
Autom. Mag., Sep. 2010.

[35] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.”
in Robotics: science and systems, vol. 2, no. 4, 2009, p.
435.

