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Abstract— This work addresses the problem of learning a
model of a dynamic environment using many independent
Hidden Markov Models (HMMs) with a limited number of
observations available per iteration. Many techniques exist to
model dynamic environments, but do not consider how to
deploy robots to build this model. Additionally, there are many
techniques for exploring environments that do not consider how
to prioritize regions when resources, in terms of robots to deploy
and deployment durations, are limited. Here, we consider an
environment model consisting of a series of HMMs that evolve
over time independently and can be directly observed. At each
iteration, we must determine which HMMs to observe in order
to maximize the gain in model accuracy. We present a utility
measure that balances a Pearson’s χ2 goodness-of-fit of the
dynamics model with Mutual Information (MI) to ensure that
observations are allocated to maximize the convergence rate of
all HMMs, resulting in a faster convergence to higher steady-
state model confidence and accuracy than either χ2 or MI alone.

I. INTRODUCTION AND RELATED WORKS

Autonomous exploration is a well studied problem with
many applications in domains such as search-and-rescue [1],
surveillance [2], and mapping [3]. At its core, the exploration
problem involves deploying one or more robots to build an
accurate model of an unknown environment. This is of par-
ticular importance for disaster response, where a persistent
understanding of the environment is necessary to facilitate
the distribution of resources and avoid dangerous regions.
Flooding is a prime example, as roads needed to transport
supplies are initially blocked or destroyed, but can become
passable again as the water ebbs and rescue teams effect
repairs. Likewise, areas where rubble is regularly shifting
or where people are congregating must be continuously
monitored to account for future dangers. Efficient operation
in such a domain requires a mapping strategy that is robust
to changes despite the limited resources available in the field.

There are two main topics of study that are relevant
to mapping explicitly or implicitly dynamic environments:
methods for modeling environments and methods to plan
for and prioritize observations. Approaches such as Gaussian
Process representations [4] or Hierarchical Gaussian Mixture
Models [5] can generate very accurate representations of
static environments by leveraging the properties of a normal
distribution to model the space between sparse observations,
but are not easily extended to handle environment dynamics.
Occupancy grids [6] simplify the problem by discretizing the
space into a regular grid, modeling the likelihood of intersect-
ing an object at each cell. Meyer-Delius et al. [7] extend the
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transitional occupancy grid to use Hidden Markov Models
(HMMs) to represent the transition probability between the
free and occupied states at each cell. The work we present
here compliments this model by prioritizing observations
to maximize accuracy when the rate observations can be
collected is limited.

When the environment topography is represented with a
probability distribution, many approaches seek to maximize
reduction of model uncertainty [8], expressed as the Mutual
Information (MI) [9] provided by updating the map with an
additional measurement. Various approaches build on this
notion by incorporating MI with a beam-sensor model [10]
or factoring in human input [11]. However, these approaches
address static or stationary environments and will eventually
converge to a high confidence, low accuracy state if insuf-
ficient measurements are provided. The work most closely
representing the described problem [12] models long-term
dynamics as a Fourier series, where the key frequencies are
extracted using an augmented Discrete Fourier Transform
designed for sparse, irregularly spaced observations. Their
proposed approach uses HMMs to model transient dynamics
and presents several exploration strategies, among which are
those that direct robots towards regions of high entropy in
both the observation likelihoods and the transition probabili-
ties. However, our proposed approach uses an objective that
blends MI with how well the transition probabilities match
observations, more directly allocating observations where
they can best improve model accuracy and confidence.

The focus of this work is to investigate the implications of
limited sensing resources directly with a simplified problem
formulation and easily scalable experiments. Environments
are modeled as an occupancy grid, where each cell is an
independent HMM that is observed directly, and a limited
number of observations are available at each time step. When
the number of cells exceeds the number of observations
available, we must determine how to properly allocate ob-
servations such that each model is viewed often enough to
capture the inherent dynamics. The main contribution of
this work is an observation allocation strategy that balances
improving model confidence and accuracy to quickly develop
an understanding of environment dynamics, resulting in
a steady-state distribution of observations that reflects the
distribution of environment dynamics.

II. PROBLEM DEFINITION

In this work, we seek to accurately model the physical
structure of a dynamic environment where the number of
sensing actions that can be taken at any given time is limited.



When the environment is initially unknown, the inherent
dynamics must be discovered online before observations
can be allocated appropriately. Here, we choose to model
the environment as a time-varying occupancy grid mt =
{m1,t , . . . ,mNc,t}, where any cell i can be in the occupied
(mi,t = occ) or free (mi,t = f ree) state at any time-step
t. To model both the environment topography and how it
changes, each cell stores a unique and independent HMM
parameterized by the probability the cell is occupied

p(mi,t = occ) = 1− p(mi,t = f ree) ∈ [0,1]

and the probabilities that the cell transitions between states

p(mi,t |mi,t−1) ∈ [0,1] ∀mi,t ,mi,t−1 ∈ { f ree,occ}.
Note that we assume the transition probabilities are locally
stationary, where the value of p(mi,t |mi,t−1) is held consistent
for all t in the absence of observations, but can change when
the observed behavior disagrees with the model.

At each time-step, Nr sensing actions are taken that update
the parameters of each HMM in mt , as depicted in Fig. 1.
Each sensing action produces an observation o j ∈ {hit,miss},
where γhit = p(o j = hit|mi,t = occ) and γmiss = p(o j =
miss|mi,t = occ) describe the likelihood of sensing the corre-
sponding observation conditioned on the cell being occupied.
For this work, we assume each observation observes one cell
directly with no occlusion and that there is no additional
cost incurred when transitioning between sensing actions
(as would occur when robots travel between locations to
collect observations). While these assumptions are restrictive,
the results we generate provide clearer intuition as to the
influence of limitations and parameter choice in our approach
directly.

The problem we address, then, is how to allocate the
Nr <Nc observations available at each time step to maximize
the quality of the resulting model mt , where quality is
defined relative to the following three measures: 1) Entropy,
expressed as:

H(mt) =− ∑
mi,t∈mt

p(mi,t) log2 p(mi,t)

+(1− p(mi,t)) log2(1− p(mi,t)), (1)

provides a measure of model confidence as it decreases while
the occupancy likelihood of all cells trend towards 0 or 1.
2) Model accuracy is expressed through the Kullback-Leibler
Divergence between the learned environment model p(mi,t)
and an oracle model where po(mi,t = occ) = 0 or 1 according
to the ground truth state:

DKL(t,m) = ∑
mi∈m

po(mi,t) log2
po(mi,t)

p(mi,t)

+(1− po(mi,t)) log2

(
1− po(mi,t)

1− p(mi,t)

)
. (2)

3) The responsiveness of our approach is expressed through
the response time di

r,t which denotes the amount of time that
passes after cell i changes state before it is observed.

di
r,t = (max(t i

obs− t i
change, t− t i

change))dt, (3)
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Fig. 1: This work explores an example scenario where Nc cells are directly
observed by Nr sensors and Nr < Nc. The objective is to appropriately
allocate measurements, where Nr are available at each time-step t, such
that the inherent environment dynamics can be accurately modeled.

where dt is duration between time-steps. In this work, we
show how our approach outperforms standard techniques
according to these measures despite the limited observations
available.

III. METHODOLOGY

This work proposes an observation allocation strategy
that scores cells based on the utility an additional obser-
vation would provide and chooses which Nr of Nc cells
to observe each time-step based on that score. Section III-
A describes the occupancy grid formulation in detail. Sec-
tion III-B describes the utility measure which factors in
the projected information gain and current goodness-of-fit
to allocate observations. Section III-C discusses how we
might extend this work to be utilized with a beam sensor
that can observe multiple cells with one sensing action.
In Section IV, experiments highlight the benefits of this
approach and evaluate the effect of varying parameters on
the method’s performance.

A. HMM Occupancy Grid
The model we use in this paper is chosen to mimic the

typical implementation of an occupancy grid. However, a
static model regresses all measurements over time directly
into the occupancy likelihood value, making it unsuitable
for dynamic environments. This can result in historical
bias having the dominant effect on occupancy likelihood,
eventually forcing the model to stay in one state, as depicted
in Fig. 2a.

Meyer-Delius et al. [7] generalize the occupancy grid ap-
proach to account for environment dynamics by defining an
HMM at each cell. In this manner, the occupancy likelihood
of each cell evolves over a series of discrete time steps as
an independent Markov process according to the recursive
update function:

p(mi,t |o1:n) = η p(on|mi,t)

∑
mi,t−1∈{ f ree,occ}

p(mi,t |mi,t−1)p(mi,t−1|o1:n−1), (4)

where η is a normalization constant.
Typical HMMs [13] are updated using Expectation Maxi-

mization (EM) to maximize the accuracy of the model over
a series of observations:

p(mi,t |mi,t−1) =
∑

t
τ=1 p(mi,τ−1 = α,mi,τ = β |o1:n,θ)

∑
t
τ=1 p(mi,τ−1 = α|o1:n,θ)

where α,β ∈ { f ree,occ} and θ are the HMM parameters
learned via the standard forward-backward procedure. We
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(a) Static Single Cell Model
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(b) Windowed Single Cell HMM
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(c) Online Single Cell HMM
Fig. 2: A time series comparison of binary-state models given sparse observations. A static model has difficulty matching the true value when it oscillates,
but the HMM versions learn transition probabilities that allow for the change. The batched HMM performs sufficiently well at the cost of storing a window
of observations, but we see similar performance with the online HMM approach without needing to store as much data.

can implement this method as an online approach by comput-
ing transition probabilities over a sliding window, resulting
in the batched HMM update depicted in Fig. 2b. While
this may be sufficient in most cases, it still requires storing
a significant amount of data for each cell to accurately
represent transition probabilities. Instead, we rely on the
online version derived by Mongillo et al [14] to update
parameters as each data point arrives, as shown in Fig. 2c.

Given that the measurements of cells arrive asyn-
chronously, the Markov process evolves in the absence of
observations according to:

p(mi,t |o1:n) =

∑
mi,t−1∈{ f ree,occ}

p(mi,t |mi,t−1)p(mi,t−1|o1:n−1), (5)

which serves to drive the occupancy likelihood asymptoti-
cally towards the stationary probability

pstat =
po| f

po| f + p f |o
,

where po| f = p(mi,t = occ|mi,t−1 = f ree) and p f |o = p(mi,t =
f ree|mi,t−1 = occ). We can see this process in the progression
of occupancy likelihood in Fig. 2, where the likelihood
exponentially decays towards the stationary probability in
the absence of observations.

B. Observation Utility Measure

Mutual Information is a useful measure of utility as
it indicates the amount of information gained through an
additional sensing action. It can be expressed in the form:

IMI [m;o] =−∑
i, j

p(mi,o j) log
p(mi)p(o j)

p(mi,o j)
,

or interpreted as the change in entropy, or uncertainty, as the
result of a measurement:

IMI [m;o] = H[m]−H[m|o],
where H[m] is the entropy of the map and H[m|o] is the map
entropy conditioned on the new observation.

Given that this expression of MI is designed for static
environments, it is insufficient when the occupancy state
is subject to change. While MI can be formulated to suf-
ficiently address the influence of transition probabilities, the
additional parameters make the computation complex and

prohibitively expensive. Alternatively, we consider using the
goodness-of-fit of the transition probability parameters in the
utility measure.

Here, we leverage the Pearson’s χ2 test to determine
how well the transition probabilities match the history of
observations. The χ2 test is a used to evaluate whether or not
an observed frequency distribution conforms to a theoretical
distribution. Kalbfleisch and Lawless [15] show how this
test can be used to determine how accurate the transition
probabilities are modeled.

The χ2 value is computed using:

χ
2(t) = ∑

i j∈{occ, f ree}

(ni jt − ei jt)
2

ei jt
,

where ni jt is the number of observed transitions from state
i to state j from time step t−L to t and ei jt is the expected
number of transitions, where ei jt can be expressed as:

ei jt = (pstatL)p(mi,t |mi,t−1).

The variable L, here, denotes the window size, or the total
number of time steps we search for transitions. One can
interpret this value as a scaled, square-distance measure of
the transition probability parameter. As we see more or less
transitions than expected, we can expect the value of χ2 to
increase. If we use this value to modulate the observation
rate of a cell, then cells that see the incorrect number of
observations will receive higher priority.

To incorporate the goodness-of-fit into our allocation ob-
jective, we compose the weighted objective function:

ui = IMI [mi;o j]+α
χ2

L
, (6)

using the value α to balance the relative influence of the
component objectives. Note that we normalize χ2 by the
window size L to mitigate its influence on the choice of α .
This ensures that the effect of α is consistent as the window
grows over time (until t > L) or when L is changed between
runs, as is evidenced in Sect. IV-C.

C. Beam Utility Measure

While the proposed approach works for single cell models,
observations traditionally impact more than one cell at a time.
For a beam sensor, there are well studied models [16][17]
that incorporate the notion of visibility to measure the likely



(a) 10% dynamic (b) 30% dynamic (c) 50% dynamic
Fig. 3: The set of test environments. Each dynamic cell is attributed an
oscillation period between 300s and 2000s, drawn from a uniform random
distribution. The percentage of dynamic cells varies between environments
as listed.

utility a sensing action could provide. The visibility of a
cell ci the set of cells c ⊂ mt intersected by a beam can be
expressed as:

vis(ci) = ∏
j<i

(1− p(c j)) (7)

where j < i defines the set of cells in c that precede i along
the ray’s direction vector. Using this value, we can determine
the expected utility of visible cells using the equation:

E[u] = ∑
i

vis(ci)ui. (8)

Thus, we will able to incorporate goodness-of-fit directly
into the beam-based utility measure in the same manner as
proposed in this paper, with the weight α applied to the
per-beam utility instead of per-cell.

IV. RESULTS

In this section, we compare the performance of the pro-
posed allocation objective against alternatives and evaluate
performance, as defined in Sect. II, when parameters and
conditions vary. Section IV-A describes the general format
of experiments and provides details on the evaluation criteria.
Section IV-B shows how the proposed approach outperforms
random selection and the component objectives used alone.
Section IV-C highlights the change in performance as the
relevant parameters are adjusted. Finally, Section IV-D eval-
uates how performance varies as a function of environment
conditions.
A. Experiment Setup

In this work, we consider scenarios where the occupancy
state of cells evolve over time at regular intervals, where
the state of each cell is represented by a square wave with
the frequency fi. As such, each cell will begin in the free
state for a duration of Ti/2, where Ti = 1/ fi is the associated
square wave period, before transitioning to the occupied state
for the same duration. Static cells are a special case where
the cell exists in its initial state for all time. Excepting the
illustrative example in Fig. 4, environments are constructed
in a grid of 1073 cells with the set of dynamic cells and
their Ti values sampled randomly. For each environment
we test, a ratio of dynamic to static cells is chosen and a
random sampling of this fraction are assigned a value of Ti
sampled from a uniform distribution between 300 and 2000
seconds. To perform a run, we allocate Nr observations to
the cells chosen based on the specified allocation objective
each time step, advancing dt = 10s after each step. Cells that
are observed are updated according to (4), while other cells
evolve according to (5).

TABLE I: Comparison of approaches for runs in the 30% dynamic environ-
ment (Fig 3b) for 10,000 seconds. Each row corresponds to a separate run
with the listed parameters. The µH and µD terms correspond to the average
entropy and KL-divergence of the last 2000s of operation. E[dr] is evaluated
over the last 2000s, where a value of greater than 1.0 suggests that a majority
of state changes go unobserved. Nu indicates the number of cells that are
unobserved over the 2000s window. Here, we see that the proposed approach
outperforms all other allocation objectives, with significantly smaller µH ,
µD, and E[dr] values as well as a sufficiently small Nu value.

Objective Nr µH µD E[dr] Nu
Random 100 337.7 340.4 0.2644 0
Random 150 284.6 299.8 0.1634 0
Random 200 250.5 270.9 0.1238 0
MI only 100 572.5 438.2 0.9315 98
MI only 150 490.1 319 0.4498 38
MI only 200 392.8 264.9 0.4319 33
χ2 only 100 276.1 320.8 0.7028 12
χ2 only 150 249 282.2 0.4779 1
χ2 only 200 229.3 245.9 0.347 2

Proposed 100 297.6 325.7 0.1238 1
Proposed 150 222.3 217.3 0.05703 0
Proposed 200 177.8 157.8 0.03326 0

B. Comparison of Objective Functions
We evaluate performance according to the entropy (1),

KL-Divergence (2), and response time (3) as formulated in
Sec. II with one caveat. While we seek to reduce the response
time for all cells, the value which best reflects our response
to changes over the whole map is the average maximum
response time fraction

E[dr] =
1

Nc
∑

i=1:Nc

max
t

d̄i
r,t .

over all cells, where we define the response time fraction as:

d̄i
r,t =

di
r,t

Ti
,

interpreted as the response time normalized by the cell’s
associated period of change. As a cell changes state at each
0.5Ti, values of d̄i

r,t > 0.5 indicate that cell i is receiving
observations less frequently than changes occur. Providing
the average maximum d̄i

r,t , as opposed to the maximum over
all cells, permits outliers to reduce the quality of performance
without being the dominant influence.

Figure 4 shows how the proposed allocation objective
compares against alternatives. Here, a small test of four inde-
pendent cells is run for each allocation objective with Nr = 1.
A random allocation objective provides a solid baseline,
which exhibits a reasonable approximation of the time-series
occupancy likelihood, but is still capable of missing changes.
We further evaluate performance in Table I, where tests are
performed on the grid shown in Fig. 3b. The listed values
for average, steady-state entropy µH , divergence µD, and
response time fraction E[dr] for the random allocation case
provide a target to exceed for our desired model confidence,
accuracy, and response time. Additionally, the number of
cells that go unobserved in the steady-state Nu highlights
when an objective is not effectively distributing focus.

Allocation by MI, while appropriate for maximizing the
confidence of individual cells, performs significantly worse
than random allocation when applied to the environment
model as a whole. Once an HMM reaches a stationary
probability with high enough confidence, priority is given to



Fig. 4: Comparison of allocation objectives. The top row shows a time series in the same manner as Fig. 2 where measurements are applied to one of four
cells every 10 seconds and each row within the plot corresponds to a different HMM cell. The bottom row plots entropy and KL-Divergence for the set
of cells in each approach. Random allocation serves as a baseline for comparison. Allocating based on MI results in accurate models, but can abandon
cells once confidence is high, resulting in low entropy but high divergence. While χ2 alone produces poor results, the proposed balanced objective can
distribute observations based on the learned dynamics resulting in low entropy and a fast decrease in divergence whenever a change induces a spike.

cells whose observations suggest dynamics. As time passes
without subsequent observations for a cell, it appears to be
static and is ignored. This results in high accuracy for a
limited subset of cells, but low accuracy and confidence
overall. We see the same trend in Table I, where Nu is
significantly higher than other approaches. As many cells
go unobserved in the steady-state, the environment model
exhibits a higher steady-state entropy and divergence as well
as poor response times.

Alternatively, using the χ2 goodness-of-fit measure alone
results in measurements being distributed more evenly, but
with less focus on ensuring high confidence. Measurements
are drawn to cells that do not observe the number of transi-
tion their HMMs predict. However, measurements that occur
immediately succeeding a change will drastically reduce
model confidence for the cell, making it more difficult to
recognize subsequent transitions.

In using the proposed objective function, we can infer
that the χ2 component serves to draw attention to cells
whose dynamics are inappropriately modeled while MI re-
covers confidence lost in adapting to the newly recognized
dynamics. Additionally, we note that our approach will bias
early measurements towards static cells, as these produce no
transitions, until the transition probabilities are low enough
and confidence high enough that other cells draw focus. This
process is highlighted in Fig 5, where our approach is applied
to an environment with cells of corresponding dynamics
artificially clustered to show how attention is allocated.
By expending effort to initially identify static regions, we
allow ourselves significantly more observations for dynamic
regions, eventually settling on a distribution of attention that
reflects the true environment dynamics.
C. Varying Parameters

Table II shows how performance changes relative to pa-
rameter choice. The first thing to note is that altering the time
window L does not appear to have an appreciable effect on
performance. As L simply defines the range of time in which

we search for transitions, it is sufficient to define L large
enough to account for the expected dynamic range and small
enough to quickly forget data collected before the model has
converged.

While we treat Nr as a parameter here, it is more ac-
curate to consider Nr as a problem constraint as the rate
of observation collection is usually limited by the available
number of robots and how quickly they can respond. As
can be expected, increasing this value results in a drastic
improvement in performance.

Varying the objective weight predictably scales the influ-
ence of the associated component objectives. As α becomes
smaller, performance mimics a pure MI objective with poorer
performance measures and a drastic increase in steady-
state Nu. Larger α values mimic the pure χ2 objective,
with reasonable performance, but less than when properly
balanced.

D. Varying Environments

To evaluate performance as environment conditions
change, we run simulations on randomly generated environ-
ments of varying density of dynamic cells. Figure 3 shows
the three environments tested in this work, with 10%, 30%,
and 50% of cells oscillating between the occupied and free
state with periods drawn from a uniform distribution between
300s and 2000s. As expected, the more the environment
exhibits change, the harder it is to model. However, we note
that the best choice of α appears to vary depending on the
environment. More static environments prefer an approach
closer to pure MI, while environments with dense dynamics
rely more heavily on the χ2 objective.

V. DISCUSSION

There are a couple of limitations when using this approach
that we note here. First, the approach is sensitive to an
accurate determination of the number of observed transitions,
ni jt . If the sensor noise is significant, false positives can
be registered, which promote further measurements of false



(a) Heatmap (b) t = 400 (c) t = 1200 (d) t = 3000 (e) t = 6000 (f) t = 10000
Fig. 5: Evolution of priority as the environment model is learned when allocating 150 observations per time-step according to the proposed objective. A
heatmap of the true dynamics is shown in a, where red indicates high frequency changes and blue indicates low frequency changes. The subsequent images
reflect the relative number of measurements assigned to the cell over a 1000s time window preceding time t, with cells appearing more transparent the
fewer measurements they are allocated over the window. Initially, measurements are spread evenly over all cells. Then focus is directed towards finding
the static cells in the environment. Finally, measurements are distributed with a bias towards dynamics cells until the distribution accurately reflects the
underlying dynamics.

TABLE II: Evaluation of performance as a function of parameter choice.
Again, each run operates for 10,000 seconds on the environment in Fig. 3b.
The objective performs as expected, with L not having a significant impact,
Nr improving performance as more observations are available, and α

mimicking the component objectives as it is tuned in either direction.

L Nr α µH µD E[dr] Nu
1000 100 10 420 416.8 1.332 117
3000 100 10 392.9 451 1.632 130
5000 100 10 392.8 452.4 1.604 132
1000 150 10 311 343 1.202 85
3000 150 10 306.8 350.2 1.298 88
5000 150 10 305.2 350.6 1.369 88
1000 200 10 261.6 268 1.011 54
3000 200 10 256 267.7 1.052 53
5000 200 10 256.4 267.8 0.9191 50
1000 100 100 290.9 253.5 0.06865 0
3000 100 100 297.6 325.7 0.1238 1
5000 100 100 297.8 347.8 0.1504 1
1000 150 100 219.5 163.9 0.0434 2
3000 150 100 222.3 217.3 0.05703 0
5000 150 100 229.4 238.8 0.06176 0
1000 200 100 185.6 136.7 0.04156 2
3000 200 100 177.8 157.8 0.03326 0
5000 200 100 182.6 169.1 0.03602 0
1000 100 200 334.5 287.9 0.1551 0
3000 100 200 314.3 347.9 0.2521 0
5000 100 200 318.5 345.1 0.2763 0
1000 150 200 228.5 172.2 0.0362 0
3000 150 200 242.3 259.2 0.0742 0
5000 150 200 246.5 265 0.1001 0
1000 200 200 197.5 148.4 0.04378 2
3000 200 200 192 194.5 0.04598 0
5000 200 200 198.1 206.6 0.05416 0

positives, creating a self-sustaining loop that biases priority
towards cells that produce noisy measurements. Strategies
for determining ni jt in the presence of noise will allow this
approach comparable performance that is robust to noisy
measurements.

Second, cells with low transition probabilities will be
revisited at very low frequencies. This trait is acceptable
when the dynamics do not change, but less so when a static
region becomes dynamic at some future time (e.g. a region is
designated for parking). We expect that inducing decay in the
confidence of our dynamics model as well as the occupancy
likelihood will serve to promote revisitation of cells that have
been considered static for too long a duration.

VI. CONCLUSION

This work presents a strategy for allocating limited sensing
resources to mapping a dynamic environment. As expected,
the best performance is achieved when the distribution of
observations reflects the dynamics being observed, which
is most easily achievable when the dynamics are learned
quickly. The results show that our proposed approach outper-

TABLE III: Comparison of performance for different concentrations of
dynamics. Tests are performed on the environments depicted in Fig. 3 for
10,000s each. The weight α is varied for each run, while the remaining
parameters are fixed to L = 3000 and Nr = 150. Environments with less
dynamics cells prefer an allocation objective closer to pure MI while more
dense dynamic cells lean towards pure χ2.

α Dyn % µH µD E[dr] Nu
10 10 114.4 46.56 0.01938 0
50 10 96.6 49.41 0.02549 0

100 10 94.87 57.34 0.03464 0
150 10 99.82 67.95 0.04216 0
200 10 106.3 80.01 0.06319 0
10 30 306.8 350.2 1.298 88
50 30 232.3 235.9 0.1475 6

100 30 222.3 217.3 0.05703 0
150 30 230.8 235.1 0.05913 0
200 30 242.3 259.2 0.0742 0
10 50 442.5 704.2 2.286 247
50 50 383.3 551.3 0.5649 58

100 50 388.7 479.9 0.111 7
150 50 395 472.5 0.09815 1
200 50 401.2 482.4 0.1074 0

forms both the pure MI and χ2 objectives, which suggests
that environments can only be modeled accurately if there
is a balanced effort between reinforcing poorly modeled
dynamics and reducing uncertainty in occupancy likelihood.
When this balance exists, we are capable of ensuring an
average response time significantly less than 0.5Ti when as
little as 14% of cells are observed each time step. While
this value will vary based on the dynamic properties of the
environment, future works can extend these results to provide
performance guarantees relative to the available number of
robots and their limited energy capacities while considering
the influence of travel time.
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