
Persistent Multi-Robot Mapping in an Uncertain Environment

Derek Mitchell and Nathan Michael

Abstract— This paper proposes a method to deploy teams of
robots with constrained energy capacities to persistently main-
tain a map of an uncertain environment. Typical occupancy
map approaches assume a static world; however, we introduce
a decay in confidence that degrades the occupancy probability
of grid cells and promotes revisitation. Further, sections of the
map whose occupancy differs between observations are visited
more frequently, while unchanging areas are scheduled less
frequently. While naive planning is intractable through the
entire space of multi-agent spatio-temporal states, the proposed
algorithm decouples planning such that constraints are resolved
separately by solving tractable subproblems. We evaluate this
approach in simulation and show how the uncertainty of our
world model is maintained below an acceptable threshold while
the algorithm retains a tractable computation time.

I. INTRODUCTION

Consider the task of deploying a team of robots to per-
sistently map a city block. Incorporating changes due to
non-transient effects, such building renovation or the daily
relocation of temporary vendors (food trucks, stalls, etc.), can
permit a typically static representation to reflect a dynamic
environment. It is trivial to recognize these dynamics if
robots are deployed to saturate the environment, observing all
changes as they occur. However, limitations on team size and
energy expenditure restrict how often such observations can
be made. We propose a system to mitigate this problem with
deployments of energy-constrained robots computed over a
sliding-window horizon to factor observations into future
deployments.

While many mapping techniques might apply here, we
use occupancy grids [1]–[3] to provide a simple and reliable
means of storing a probabilistic representation of the physical
structure of the environment. Dynamic Pose Graphs [4] offer
an alternative approach that stores observations and their
corresponding locations in a graph structure, while pruning
contributions that disagree with more current measurements.
This is an effective means of building a dynamic map while
mitigating localization errors, but the transient quality of
nodes makes it difficult to track the environment dynamics.
Other approaches, such as such as Gaussian Process repre-
sentations [5] or Hierarchical Gaussian Mixture Models [6],
can provide a representation of the full map with sparse data
by using the properties of a normal distribution to describe
the space between measurements. However, as environments
are learned with high confidence, it becomes increasingly
difficult to register changes. As occupancy grids maintain
the likelihood of intersecting an object over regularly spaced

Derek Mitchell and Nathan Michael are affiliated with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
{derekm,nmichael}@cmu.edu.

grid cells, we can apply an exponential decay to allow for
newer observations to have a greater impact.

In active perception tasks, the utility of observations are
typically determined by the entropy reduced in querying the
sensors at a location, referred to as the Mutual Information
(MI) of an observation. An early work uses a single-step
controller to drive robots towards candidate observations
with high MI relative to a spatiotemporal Gaussian Process
environment model [7]. Subsequent works have improved
on the quality of this measure by simplifying computation
at the cost of optimality [8] or by refining it with an
objective learned from human input [9]. Other works apply
MI to unique environment models, such as Gaussian Markov
Random Fields [10]. MI has been proven to be a viable
utility measure, but these recent works have focused on
myopic, reactive controllers to drive robots. Here, we use the
improved MI from [8] to determine salient observations, but
apply a more sophisticated planner to generate trajectories
for a team of energy constrained robots.

The challenge of task scheduling and assignment is ad-
dressed in operations research by optimizing load-balancing
algorithms starting from the Traveling Salesman Problem and
the Vehicle Routing Problem [11], [12] and extending to
a host of complex variants [13], [14]. Recent works have
sought to draw some of this insight into the robotics field by
increasing robustness through the use of finite horizons [15]
or by integrating heuristics to improve the computation speed
at the cost of optimality [16], [17]. The system presented
here applies these techniques to the persistent exploration
problem, computing efficient, energy-aware deployments to
build a consistent map of a dynamic environment.

The main contributions of this paper are:
• An occupancy grid representation that degrades the

contribution of old measurements
• A framework that plans deployments of energy-

constrained robots in the above representation
• A system that iterates the planner over a sliding-window

horizon to persistently extend plans

II. PROBLEM DEFINITION

Given a map representation that exhibits decay in the
contribution of observations, we seek to deploy a team of
energy-constrained robots from a starting location, xs, to per-
sistently improve map accuracy. We use a 3D occupancy grid
to provide a probabilistic representation of the environment,
with each cell storing the occupancy likelihood p(mi|o1:n)
for a cell i in map m given a set of observations o1:n.
The standard assumptions that apply here are: 1) Cells are
independent (p(m|o1:n) =

∏
i p(mi|o1:n)) 2) robots have

perfect localization, and 3) unobserved cells begin with a
uniform prior (p(mi) = p(¬mi) = 0.5). The state of each
cell is evaluated by comparing against user-defined threshold
values, where p(mi|o1:n) ≥ γocc indicates an occupied cell,
p(mi|o1:n) ≤ γfree indicates a free cell, and all other cells are
unknown. Each cell is updated with new observations using
the inverse measurement model [18]:

logit(p(mi|o1:n)) = logit(p(mi|on))− logit(p(mi))

+ logit(p(mi|o1:n−1), (1)

where logit(p) = log p
1−p is the log-odds representation of

a probability p. We induce decay in old measurements by
applying an exponential function directly to the log-odds
likelihood:

logit(p(t,mi|o1:n)) = e−αi(t−tlast,i) logit(p(mi|o1:n)), (2)

where t is the current time, tlast,i is the time cell i was last
observed, and αi is a parameter we tune to adjust the rate of
decay. This relation causes p(mi, t) to approach p(mi) = 0.5
as t approaches infinity, simulating an increase in uncertainty
as time progresses.

To compute deployments, given the dynamic map rep-
resentation described above, we compute a set of energy-
constrained routes over a sliding-window horizon by gener-
ating plans at a time tstart to time tend, then advancing both
terms by duration dadv, updating the map, and recomputing.
The core problem solved, on a per-horizon basis, is to
compute the set of routes that append to or extend previous
plans to collect observations that maximally improve map
accuracy.

III. METHODOLOGY

We approach the above problem with the system described
in Fig. 1. Given an occupancy grid that evolves according
to (1) and (2), we adapt to perceived changes by adjusting
αi online. As cells are consistently observed as being in
the same state αi decreases, resulting in a slower decay of
confidence

αmi = αmax − 0.5(αmax − αmi).

Likewise, cells with states that vary between observations
will see αi increase, thus increasing the frequency that
observations will be required

αmi = αmin + 0.5(αmi − αmin),

where αmax and αmin are user-specified bounds on the decay
rate. As we only seek to prove the viability of the planner
on a time-dependent map, we have chosen a naive strategy
which simply steps the decay rate asymptotically towards
a set value whenever a measurement is taken. The sensor
model simulates a forward-facing ranging sensor that extends
beams over a 120 degree horizontal span and a 60 degree
vertical span for a maximum range of 1..5 meters. Any cell a
beam passes through is updated with p(mi|on) = γmiss and
any cell in which a beam intersects and object is updated

Waypoint
Selection

Environment
Model

Waypoint
Assignment Path Planning

Sensor
Model

Node
Locations

Occupancy
Probability

Cell Updates

Simulator

Trajectories

Obstacle
Locations

Observations

Waypoint
Paths

World Model

Beam
Model

Fig. 1: System diagram. Yellow blocks represent the planning pipeline, green
blocks handle observation generation, and red blocks execute plans within
a simulated environment.

with p(mi|on) = γhit, where γmiss and γhit are user-defined
parameters.

The following sections show how the planning pipeline
computes routes, given the above environment and sensor
models. First, Section III-A describes how a set of reachable,
informative poses (waypoints) are chosen from the occu-
pancy grid based on the Mutual Information they provide.
Then, Section III-B details the path planning algorithm,
which generates paths pairwise between all waypoints to
evaluate travel cost and feasibility. Finally, Section III-C
computes routes that distribute waypoints among robots and
updates the plan over the current horizon.

A. Waypoint Selection

The first component of the planning pipeline samples a
set of informative waypoints small enough for the system
to process in a reasonable amount of time. The value
of a set of waypoints is determined by the information
they provide. Cauchy-Schwarz Quadratic Mutual Information
(CSQMI) [8] provides a measure of this value, reflecting the
diminishing returns property exhibited by sets of points that
view overlapping regions. For the sake of brevity, we ask
the reader to refer to [8] for a derivation of CSQMI and
understand that we are able to compute an appropriate utility
function from a set of robot poses.

To build the set of waypoints, we first compute the set
of reachable poses, directed towards the nearest unknown
frontier, then iteratively select the pose that contributes
the most additional information until we have collected
Nw waypoints. The reachable set is generated using our
implementation of Dijkstra’s algorithm described in Sect. III-
B, where shortest distance paths are grown from xs until all
reachable space is explored.

The Waypoint Selection algorithm is detailed in Algo-
rithm 1. First, the set of all frontier cells is established in
Vfrontier as the set of all cells that are unknown (γfree <
p(t,mi|o1:n) < γocc), but bordered by at least one free cell.
Next, we greedily cluster these cells in Cfrontier using the
GreedyClustering algorithm which initially appends a cell
from Vfrontier, then adds all cells from Vfrontier within a distance
threshold. This process is repeated until all cells from Vfrontier
are assigned to a cluster in Cfrontier. The set of all reachable
free cells is assigned to Vfree using the DijkstraReachables

Fig. 2: Depiction of a 2D map, with shaded boxes representing unknown
voxels. (Left) Colored blocks represent frontier cells, clustered into groups.
(Right) Green lines represent beam measurements from 12 unique poses
chosen for maximum information value.

Algorithm 1: Waypoint Selection

1: procedure WAYPOINTSELECT(m,xs, Nw, ε)
2: Vfrontier ← Set of all frontier cells in m
3: Cfrontier = GreedyClustering(Vfrontier)
4: Vfree ← DijkstraReachables(m,xs)
5: P ← ∅ . Set of pose candidates
6: for each mf ∈ Vfree do
7: cf,near = argmincf∈Cfree ‖cent(mf)− cent(cf)‖2
8: if ‖cent(mf)− cent(cf,near)‖ < max range then
9: θ = LookAt(mf , cf,near)

10: P = P ∪ {cent(mf), θ}
11: end if
12: end for
13: W ← ∅ . Final waypoint poses
14: while |W | < Nw do
15: wnext = argmaxl∈L CSQMI(m, tstart,W ∪ p)
16: d = CSQMI(m, tstart,W ∪ wnext)
17: −CSQMI(m, tstart,W)
18: if d < ε then
19: return W
20: end if
21: W =W ∪ wnext
22: end while
23: return W
24: end procedure

algorithm, which uses the algorithm in Sect. III-B to find
the shortest distance path to all cells reachable from xs.

Once the clusters and reachable cells are collected, can-
didate poses are constructed at each reachable cell. Lines 6
to 12 show this process in detail, where cent(x) determines
the centroid of a cluster or cell and LookAt(x, c) determines
the angle that points to the centroid of cluster c from
cell x. After the candidate poses are collected in P , we
select the Nw most informative poses. In lines 14 to 22,
CSQMI(m, tstart,W) is used to determine the information
value of a set of poses, W , at the horizon start time. The
pose which provides W with the most additional information
is found (line 15) and appended to W if it provides value
added greater than a user defined threshold, ε. Otherwise,
the algorithm breaks early, preventing the inclusion of un-
informative waypoints in the case where the environment is
already sufficiently known. Figure 2 shows the clustering and
selection aspects of this approach.

Algorithm 2: Dijkstra’s Algorithm with Dynamic Occupancy

1: procedure DYNAMICDIJKSTRAS(m, s, ts, vtraverse)
2: Q = {s} . Open node set
3: for i = 0, . . . , |m| do
4: dist[i] =∞ . Distance from start
5: prev[i] = ∅ . Previous cell index
6: end for
7: dist[s] = 0
8: while Q 6= ∅ do
9: i← Q

10: Q = Q \ i
11: for each j ∈ Neighbors(i) do
12: d = dist[i] + length(i, j)
13: t = d/vtraverse + ts
14: if d < dist[j] and p(mj , t) < γfree then
15: dist[j] = d
16: prev[j] = i
17: Q = Q ∪ j
18: end if
19: end for
20: end while
21: return dist, prev
22: end procedure

B. Path Planning

In this section, we generate the paths to be used in
Sect. III-C using a variant of Dijkstra’s algorithm, described
in Algorithm 2, which is modified to plan only through
free cells as determined by p(t,m|o1:n) ≤ γfree. Paths
are generated from a starting cell s and extended through
neighbors until all reachable cells are explored. If we also
provide the algorithm with the starting time ts and the
assumed constant speed of the robots vtraverse, we ensure
that paths will always be feasible despite the introduction
of confidence decay.

Dijkstra’s algorithm typically begins with an open set of
cell indexes Q, containing only the start index (line 2). Then
neighbors are evaluated to see if the path through the current
index belongs to the shortest path. The vectors, dist and
prev, store The closest distance to s and the previous index
in the shortest path available are stored in the vectors, dist
and prev, which are updated for each cell processed. Once
the algorithm finishes, we are left with a set of reachable
cells whose corresponding paths are determined by iterating
backwards through prev. The key change to the traditional
Dijkstra’s algorithm comes from evaluating the viability of
neighbors to ensure that the cell at index j will be free at
time t (line 14), where t represents the time of arrival from
the start index under the assumption of a constant traversal
velocity, vtraverse.

Applying this algorithm to each waypoint, we derive the
shortest distance trajectories between waypoints. Given that
we have encoded the informative value of waypoints in W ,
we optimize utility by maximizing the number of waypoints
addressed per route. This is preferable to heavily investing

in computing informative paths at this point, as many paths
between waypoints will not contribute to the final solution.

C. Waypoint Assignment

Once the paths connecting W are defined, we rely on the
techniques described in [15] to assign waypoints to robots.
Their main contribution was to approach periodic task as-
signment by extending schedules through locally-static finite
horizons. New waypoints are generated from periodic task
generators and location or timing can be adjusted between
horizons to improve the reliability of the overall solution.
This effectively blends the quality of a complex convex
optimization solver with the responsiveness of closed-loop
control. In the system we propose here, this approach
is implemented to provide scheduled waypoint visitations
over finite horizons concurrently with robots exploring the
environment and refining the map. Updates to the map
then inform subsequent scheduling horizons to improve the
accuracy of the resulting plans.

The basic approach solves a Vehicle Routing Problem with
Time Windows (VRPTW) defined by a graph G = (A,E)
of nodes A and edges E. The node set A includes a node
corresponding to xs at the start, So, and end, Sg of the
horizon, a node for each waypoint in W , and a virtual node
for each robot that will be active at tstart. The virtual nodes,
which correspond to the last planned waypoint visit before
tstart, permit the extension of previously computed plans.
Edges in E use the path cost between waypoints as computed
by the DynamicDijkstras algorithm. The VRPTW takes the
following form:

min
x

∑
k∈K

∑
(i,j)∈A

cijx
k
ij (3)

s.t.
∑
k∈K

∑
j∈V

xki,j = 1 ∀i ∈ V (4)∑
j∈V ∪Sg

xkoj = 1 ∀k ∈ K (5)

∑
i∈So∪V

xkig = 1 ∀k ∈ K (6)∑
i∈N

xkih −
∑
j∈N

xkhj = 0 ∀h ∈ V, k ∈ K (7)

ski − skj + tij − Z(1− xkij) ≤ 0 ∀(i, j) ∈ A, k ∈ K
(8)

ai ≤ ski ≤ bi ∀i ∈ N, k ∈ K (9)∑
(i,j)∈A

Bijx
k
ij ≤ Bmax ∀k ∈ K (10)

where xkij ∈ 0, 1 determines if robot k in the set of robots
K travels the path between waypoints i and j, ski ∈ R+

indicates the time at which waypoint i is visited by robot
k, cij represents the cost of traveling the path between i
and j, and ai and bi define the lower and upper bounds
of the time-window for waypoint i. We set cij to equal
the travel time along the path between waypoints such that
the objective (3) will minimize the total travel time over

all robots. Constraints (4)-(7) ensure that only one robot
leaves each waypoint, each robot begins at the start node
So and ends at the goal node Sg , and any robots arriving
at a waypoint must leave it. Constraint (8) ensures that a
robot that travels the edge (i, j) arrives at j after ski plus
the duration of travel tij . Constraint (9) enforces the time-
window bounds and constraint (10) limits energy expenditure
to the battery limit Bmax, where Bij = max(tij , aj − ai) to
conservatively estimate the expenditure of energy assuming
a constant discharge rate.

The above Mixed-Integer Linear Program can be sim-
plified by relaxing constraint (4), resulting in a set of
constraints that are all agnostic of robot assignment. It is
shown in [19] that the Lagrangian Dual obtained as a result
of this relaxation takes the form:

zLD(λ) = |K|

(
min
x

(cij − λi)xkij +
∑
i∈V

λi

)
, (11)

subject to (5)-(10). Note here that minx(cij−λi)xkij , subject
to the same constraints, is an expression of the Elementary
Shortest Path Problem with Resource Constraints (ESPPRC)
for a single robot with costs reduced by λ. Maximization
of this dual objective is then a matter of testing values of
λ against the set of all feasible single-robot routes through
the waypoint set. As this is impractical, we rely on the
Stabilized Cutting-Plane Algorithm (SCPA) [19], which al-
ternates between building a set of Pareto-optimal paths and
searching for the optimal λ. In each iteration, we solve the
ESPPRC [20] for a given set of λ values and append the
resulting path(s) to the constraint set bounding (11), then
we find the values of λ which optimize zLD. When the gap
between zLD and the minimal-cost path is small enough, the
set of paths that actively constrain the dual objective become
the solution set. As the constraint on waypoint visitation
has been relaxed, the final solution must be refined such
that each waypoint is visited only once. For each waypoint
with multiple visitations, we generate a set of problem
formulations, each with an additional constraint that either
forces or excludes one of the transitions xij . This process
is applied recursively within each branch until all variants
of the problem are explored. At this point, we return the
solution with the minimum objective value as the set of
optimal routes.

In the system presented here, the VRPTW can be con-
structed in a straight-forward manner. The costs cij and
durations tij can both be represented by path traversal
duration dist[i][j]/vtraverse between waypoint i and j. The
time-window bounds ai and bi consider the paths to and from
xs. The lower bound ai is equal to the travel time between
xs and i (ai = tstart + toi) as the earliest visitation possible
occurs by traveling directly from start. The upper bound bi is
set to the latest moment the edge (i, g) can be traveled before
the confidence decay causes a cell to become unknown. We
compute this for a single cell with a fairly simple inversion

(a) (t = 0) (b) (t = 500) (c) (t = 510) (d) (t = 1422)

Fig. 3: System in operation. Green blocks are obstacles. Cylinders are robots with tails showing the last 5 seconds of motion. Black cubes are voxels
designated occupied within the occupancy map. Free and unknown cells are not indicated to preserve visibility. (a) Initial measurement. (b) One robot
returns to depot while others explore behind walls. (c) After robots return, two more depart. (d) Final measurement.

of the confidence decay (2):

tunknown,i =
1

αi
log

(
logit(p(mi|o1:n))

logit(γfree)

)
+ tlast,i, (12)

The latest feasible departure for cell i is determined by
computing the tunknown,i for each cell along the path from
i to g and subtracting the time required to travel to the cell
from i, which we approximate as the travel distance divided
by vtraverse. The latest feasible departure for the whole path
is then the earliest time a robot can begin a path before any
cell becomes unknown:

bi = min
j∈path(i,xs)

tunknown,j −
distance(i, j)
vtraverse

,

where distance(i, j) is the path length to cell j along the
path connecting waypoint i to xs. Closing the time window
at this value of bi ensures that the option of returning to the
start position is always available.

IV. SIMULATION EVALUATION

We evaluate the proposed system under controlled con-
ditions by computing deployments of aerial robots for ex-
tended operation in a simulated environment. Typical active
perception applications consider the reduction of entropy in
the environment model over time as a means of showing the
accuracy and efficiency of the approach. We evaluate entropy
for the given approach and compare against a naive, greedy
algorithm to show how the proposed system is better suited
to handle the constant degradation of certainty. Given the
energy-constraints considered, we also evaluate the planned
durations and show feasible operation that consistently uses
the majority of each robot’s capacity. Additionally, we pro-
vide insight into the performance of our system by plotting
the number of robots deployed over time and showing a
comparison graph of computation times.

For the simulation experiments detailed here, we used the
world configuration shown in Fig. 3. Robots start from a
single position and explore the space bounded by an axis-
aligned rectangle while avoiding obstacles (green blocks).
The environment model is divided into grid spaces at a
resolution of 0.25 meters along each axis. The probability
thresholds are set at γfree = 0.13 and γocc = 0.7, with
γhit = 0.7 and γmiss = 0.3. The maximum number of

waypoints, Nw, is chosen to be 12 for the simulation tests to
allow for fast computation of finite horizons of 40 seconds
long. For convenience, we define energy capacity in terms
of flight duration, which we set to 100 seconds.

We simulated operation for 3000 seconds with no limit
on the number of robots deployed and compared against
a greedy algorithm that directs a robot to the next best
waypoint immediately after it collects a measurement. With
the greedy approach, we assume that the map is updated
online and shared between all robots, allowing for the
optimal choice of next best observation. We evaluate the
efficiency of our approach in the left image of Fig. 4 using
entropy, defined as:

H(m, t) = −
∑
mi∈m

p(mi, t) log2 p(mi, t)

+ (1− p(mi, t)) log2(1− p(mi, t)), (13)

and the Kullback-Leibler divergence for a multivariate bino-
mial probability distribution:

DKL(m, t) =
∑
mi∈m

W (mi, t) log2
W (mi, t)

p(mi, t

+ (1−W (mi, t)) log2

(
1−W (mi, t)

1− p(mi, t

)
, (14)

where W (mi, t) is the occupancy likelihood in the oracle
model derived from the simulated world configuration. En-
tropy reflects the confidence in the map, trending towards
zero the closer each cell probability approaches 1.0 or 0.0.
Divergence, however, highlights model accuracy by trending
towards zero the closer the occupancy likelihood approaches
the oracle model. The greedy algorithm shows a fast initial
decrease of entropy and divergence, but slows under the
effect of confidence decay. This trend highlights the weak-
ness of a decoupled planner, where coverage responsibility
is not effectively distributed among robots. By applying the
principled waypoint assignment of our approach, we are
able to consistently improve accuracy and confidence while
additionally respecting energy constraints.

The middle image of Fig. 4 shows a histogram of energy
expenditure over the course of operation. For the optimal
planner, this histogram should be dominated by the rightmost

Fig. 4: (Left) The evolution of confidence in the environment model for the proposed system compared against a greedy approach with 3, 4, and 5 robots.
Entropy provides a measure of confidence in the entire map, while Divergence provides a measure of how accurate the model is relative to the true world.
The greedy approaches initially converge faster, but are less able to leverage their team size to mitigate the constant increase in uncertainty. (Middle)
Histogram of capacity expenditure for planned routes. The more routes in the rightmost bin, the more utility the system is deriving from the limited energy
capacity. (Right) Team size required for the simulated operation assuming charge time is 5x flight time. Blue section counts simultaneously active robots
while red section counts robots charging.

bin, showing that robots are consistently expending most of
their capacity over each route. By extending paths iteratively
over multiple horizons, we are able to ensure that robots
remain active for the duration of their flight time. As such,
we show that 90.3% of the deployed robots expend more
than 80% of their capacity.

In the right image of Fig. 4, we evaluate the number
of robots deployed when robots must passively charge for
five times their operation time before being able to return
to operation. Actively operating robots are counted in the
blue section, showing that more are deployed as the map
is revealed, with an average number of roughly 3.79 robots
deployed over the duration of the simulation. The red section
shows the additional number of robots charging at any given
time, where the total number of robots invested is indicated
by the top red line. The data here shows that running
the system with the described charging configuration would
require at least 30 robots to run without interruption. Similar
evaluation can be made for various charging methods, allow-
ing a user to determine how many robots might be required
to cover a given type of environment.

This simulation was performed on a Dell PowerEdge T420
with an Intel Xeon E52450 v2 2.50GHz processor and 16 GB
of RAM. The computation time for each scheduling horizon
is depicted in Fig. 5. The actual computation time may
differ depending on hardware, but the figure here provides
some insight as to the relative computational burdens of
components of the system. Note that the greatest burden
comes from the Waypoint Selection algorithm. This is likely
due the naive nature of the approach which computes CSQMI
for all reachable free spaces Nw times. In future works, we
will explore approaches that drastically reduce the burden on
this component to allow the other algorithms more time to
address harder problems.

V. CONCLUSION

This paper presents a system designed to deploy energy
constrained robots to persistently cover an uncertain environ-
ment. We described adaptations to a standard environment
model and presented an integration of path planning and

Fig. 5: Computation time required to generate plans for each horizon show-
ing the relative time required by individual components of the algorithm.
Complexity remains consistent once steady-state is reached.

task assignment techniques to persistently generate energy-
feasible routes. As this is early in the development stage,
there is much room for improvement in the selection and im-
plementation of individual components. However, we present
a solid foundational structure capable of generating plans
quickly that have a high likelihood of driving robots only
through free space while ensuring that robots do not exceed
their battery capacity while in operation.

As such, there are many areas we will seek to improve in
future works. In particular, Waypoint Selection will benefit
from attention towards improved computation time and a
better spatial distribution of candidate waypoints. Addition-
ally, the development of a complimentary informative path
algorithm to refine trajectories after scheduling will improve
the rate at which map entropy decreases. In future works,
we will explore options such as these and evaluate how they
interact within the context of the full system.

REFERENCES

[1] M. C. Martin and H. Moravec, “Robot evidence grids,” March 1996.
[Online]. Available: https://www.frc.ri.cmu.edu/∼hpm/project.archive/
robot.papers/1996/RobotEvidenceGrids.pdf

[2] S. Thrun, “Learning Occupancy Grid Maps with Forward Sensor
Models,” Autonomous Robots, vol. 15, no. 2, pp. 111–127, Sep 2003.
[Online]. Available: https://doi.org/10.1023/A:1025584807625

[3] T. Colleens, J. J. Colleens, and D. Ryan, “Occupancy grid
mapping: An empirical evaluation,” in Mediterranean Conference
on Control Automation, June 2007, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/MED.2007.4433772

[4] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph SLAM: Long-term mapping in low dynamic
environments,” in Proc. of the IEEE/RSJ Int. Conf. on Intelli.
Robots and Systs., Oct 2012, pp. 1871–1878. [Online]. Available:
https://doi.org/10.1109/IROS.2012.6385561

[5] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy
maps,” The International Journal of Robotics Research, vol. 31,
no. 1, pp. 42–62, 2012. [Online]. Available: https://doi.org/10.1177/
0278364911421039

[6] S. Srivastava and N. Michael, “Approximate continuous belief
distributions for precise autonomous inspection,” in IEEE Int. Sym.
on Safety Security and Rescue Robotics, Oct 2016, pp. 74–80.
[Online]. Available: https://doi.org/10.1109/SSRR.2016.7784280

[7] A. Singh, F. Ramos, H. D. Whyte, and W. J. Kaiser, “Modeling
and decision making in spatio-temporal processes for environmental
surveillance,” in Proc. of the IEEE Intl. Conf. on Robot.
Auto., May 2010, pp. 5490–5497. [Online]. Available: https:
//doi.org/10.1109/ROBOT.2010.5509934

[8] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic
mapping using Cauchy-Schwarz Quadratic Mutual Information,” in
Proc. of the IEEE Intl. Conf. on Robot. Auto., May 2015, pp.
4791–4798. [Online]. Available: https://doi.org/10.1109/ICRA.2015.
7139865

[9] H. Liu and M. A. Hsieh, “Neural Network Aided Information
Theoretic Exploration,” in IEEE Int. Sym. on Safety Security
and Rescue Robotics, Aug 2018, pp. 1–7. [Online]. Available:
https://doi.org/10.1109/SSRR.2018.8468650

[10] C. Wang, T. Li, M. Q.-H. Meng, and C. D. Silva, “Efficient
Mobile Robot Exploration with Gaussian Markov Random Fields
in 3D Environments,” in Proc. of the IEEE Intl. Conf. on
Robot. Auto., May 2018, pp. 5015–5021. [Online]. Available:
https://doi.org/10.1109/ICRA.2018.8460788

[11] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet, “Classical
and modern heuristics for the vehicle routing problem,” International
Transactions in Operational Research, vol. 7, no. 4, pp. 285 –
300, 2000. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0969601600000034

[12] P. Toth and D. Vigo, The Vehicle Routing Problem, 2002, ch.
2. Branch-And-Bound Algorithms for the Capacitated VRP, pp.
29–51. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/1.
9780898718515.ch2

[13] Y. Chan and S. Baker, “The multiple depot, multiple traveling salesmen
facility-location problem: Vehicle range, service frequency, and
heuristic implementations,” Mathematical and Computer Modelling,
vol. 41, no. 8, pp. 1035 – 1053, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0895717705001639

[14] R. Baldacci, A. Mingozzi, and R. Roberti, “Recent exact algorithms
for solving the vehicle routing problem under capacity and time
window constraints,” European Journal of Operational Research,
vol. 218, no. 1, pp. 1 – 6, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0377221711006692

[15] E. Stump and N. Michael, “Multi-robot persistent surveillance
planning as a Vehicle Routing Problem,” in IEEE Int. Conf. on
Autom. Sci. Eng., Aug 2011, pp. 569–575. [Online]. Available:
https://ieeexplore.ieee.org/document/6042503/

[16] D. Levy, K. Sundar, and S. Rathinam, “Heuristics for
routing heterogeneous unmanned vehicles with fuel constraints,”
Mathematical Problems in Engineering, vol. 2014, Article
ID 131450, 12 Pages, 2014. [Online]. Available: https:
//doi.org/10.1155/2014/131450

[17] D. Mitchell, N. Chakraborty, K. Sycara, and N. Michael, “Multi-
Robot Persistent Coverage with Stochastic Task Costs,” in Proc.
of the IEEE/RSJ Int. Conf. on Intelli. Robots and Systs.,

Hamburg, Germany, Sept. 2015, pp. 3401–3406. [Online]. Available:
https://doi.org/10.1109/IROS.2015.7353851

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2008.

[19] B. Kallehauge, J. Larsen, and O. B. Madsen, “Lagrangian duality
applied to the vehicle routing problem with time windows,” Computers
& Operations Research, vol. 33, no. 5, pp. 1464 – 1487, 2006.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0305054804003028

[20] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An
exact algorithm for the elementary shortest path problem with
resource constraints: Application to some vehicle routing problems,”
Networks, vol. 44, no. 3, pp. 216–229, 2004. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20033

