
Decentralized Multi-Robot Planning in Dynamic
3D Workspaces

Arjav Desai and Nathan Michael ?

The Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15232, USA

Abstract. We consider the problem of decentralized multi-robot kin-
odynamic motion planning in dynamic workspaces. The proposed ap-
proach leverages offline precomputation on an invariant planning repre-
sentation (invariant geometric tree) for low latency online planning and
replanning amidst unpredictably moving dynamic obstacles to generate
kinodynamically feasible and collision-free time-parameterized polyno-
mial trajectories. Simulation results with up to 10 robots in dynamic
workspaces composed of varying obstacle densities (up to 30 % by vol-
ume) and speeds (up to 2.5 m/s) suggest the use of the proposed method-
ology for real-time kinodynamic replanning in dynamic workspaces.

1 Introduction

Reliable and responsive multi-robot deployments in application domains such as
search and rescue necessitate an online motion planning methodology to com-
pute kinodynamically feasible and collision-free motion plans for each robot in
the team. Additionally, the planning methodology must be robust to (1) unex-
pected changes in operator intent over the course of the deployment and (2) to
the presence of dynamic obstacles (human operators, debris, displaced physical
objects) sharing the workspace. In this work, we seek to develop a planning and
coordination framework for multi-robot teams for generating kinodynamically
feasible and safe motion plans for dynamic 3D workspaces.

This problem is challenging due to several reasons. First, kinodynamic plan-
ning in dynamic workspaces involves searching for a feasible sequence of states
in a high-dimensional search space (challenge C1). The high dimensionality is
attributed to the need to encode the higher-order kinematics and dynamics of
the robot, as well as a time dimension to account for the spatiotemporal charac-
teristics of the the dynamic obstacles in the workspace. Second, evolving mission
conditions (e.g. online changes in goal locations) precludes the use of precom-
puted motion plans; therefore the multi-robot team must be able to replan online
from potentially non-stationary initial states (challenge C2). This is challenging
as robots cannot wait in place as in [11] in order to avoid conflicts. Third, long
term trajectory prediction for stochastic dynamic obstacles is difficult due to

? Carnegie Mellon University, Pittsburgh, PA, USA, email: {arjavdesai, nmichael}
@cmu.edu. We gratefully acknowledge support from industry.

2 Arjav Desai and Nathan Michael

compounding effects of modeling inaccuracies as well as state and motion uncer-
tainty [1]. A short prediction horizon is thus favoured which in turn necessitates
planning approach which can replan at high-rates while maintaining kinody-
namic feasibility and safety (challenge C3).

Related Works: Several works address motion planning in dynamic workspaces.
Hierarchical Cooperative A* (HCA*) proposed by Silver et al. [10] searches for
geometric paths in the full space-time search space under the guidance of a lower
dimensional heuristic. While HCA* guarantees the optimality of the solution, it
is essentially an offline algorithm. Vemula et al. [12] sacrifice optimality for ef-
ficiency and extend the notion of adaptive dimensionality for path planning in
dynamic workspaces. The dimensionality of the search space is selectively in-
creased in regions of conflict and ignored everywhere else. While this approach
provides higher success rates and lower computation times than HCA*, it does not
explicitly consider kinodynamic constraints and assumes complete knowledge of
the trajectories of dynamic obstacles. Phillips et al. in [9] propose a search-based
approach for kinodynamic motion planning in unpredictably dynamic environ-
ments. The authors exploit the observation; in a dynamic environment, a partic-
ular robot configuration is collision-free for only a few time steps (a safe interval);
to reduce the search space dimensionality. The success of this approach is pred-
icated on the stationarity of the initial robot states. This assumption renders
the approach in [9] impractical for online replanning scenarios. Sampling-based
approaches such as Multipartite RRT (MP-RRT) proposed by Zucker et al. [14] pro-
poses replanning amidst dynamic obstacles by biasing the sampling distribution
and reusing sub-trees over the course of the search. RRTx proposed by Otte et al.
[8] for single-robot replanning in dynamic environments address the limitations
of MP-RRT; the search-tree in RRTx is rooted at the goal which eliminates the
additional collision-checks and tree rewiring operations due to the motion of the
robot. These algorithms work well for geometric planning tasks, however, they
are not well suited for real-time planning in high-dimensional state spaces for ag-
ile systems like quadrotors due to the computational cost associated with solving
a two-point boundary value problem for each sampled configuration and eval-
uating the corresponding solution for feasibility and safety. Optimization-based
approaches such as the one proposed by Zhu et al. [13] also consider motion plan-
ning in dynamic environments. However, due to high computational complexity,
these are typically restricted to sparsely cluttered environments.

Contributions: This work addresses the aforementioned challenges for multi-
robot motion planning in dynamic workspaces. Our approach leverages offline
reachability analysis on an invariant local planning representation (initially pro-
posed in [3]) and decentralized planning to counter the curse of dimensional-
ity (addressing C1) The proposed planning representation allows for replanning
from non-stationary initial states (addressing C2). Additionally the representa-
tion allows for search in the lower dimensional geometric space and guarantees a
kinodynamically feasible and safe solution if a geometric solution is found, with-
out additional refinement. Finally, we propose a fast collision checking approach
in dynamic environments that allows for low latency replanning (addressing C3).

Decentralized Multi-Robot Planning in Dynamic 3D Workspaces 3

2 Problem Formulation

2.1 Notation and Assumptions

R and N denote the set of real and natural numbers respectively. S, M, v, and
s denote sets, matrices, vectors, and scalars respectively. |S| denotes the set
cardinality. The assumptions used in this work are as follows. First, the robots
employed are differentially flat and jerk-controlled [6] quadrotor systems. The
team composition is assumed to be homogeneous and each robot is physically
modelled as a ball of of radius r denoted by Br(x) where x ∈ R3 denotes the
cartesian coordinates of the centre of the ball. Second, the static portions of the
3-D workspace are known a priori. Third, the current states (position, velocity)
and the bounding volumes of the dynamic obstacles are observable. The future
trajectories are unknown and must be predicted. Fourth, robots can communi-
cate without latency within a communication radius of rcomm.

2.2 Problem Statement

Consider a team of n robots with a p dimensional state space deployed in an
uncertain dynamic workspace denoted byW. The set of points corresponding to
the known and static obstacles is given by Ws and the set of points occupied by
the dynamic obstacles at time t are given by Wt

d. At any time t ∈ R>0, the set
of occupied pointsWt

occ is the union set ofWs andWt
d and the set of free points

is given byWt
free =W\Wt

occ. Let I ∈ Rn×p denote the set of initial robot states
and F ∈ Rn×p denote the set of desired terminal states for n robots.

The objective of the motion planner is to generate a time-parameterized
sequence of trajectories for each robot in the team that lead the robots from
I terminate within an ε-ball, Bε, of the terminal states F where ε ∈ Rp are
continuous up-to the second derivative of position, i.e., acceleration.

Let {ξ[t0,t1]
i (t), . . . , ξ

[tk−1,tk]
i (t)} denote the time-parameterized trajectories

for robot i, and {ξ[t0,t1]
j (t), . . . , ξ

[tk−1,tk]
j (t)} denote the trajectories for robot j.

At any time t ∈ R such that tk−1 ≤ t ≤ tk, the corresponding states xti ∈ Rp
and xtj ∈ Rp satisfy the following constraints. First, each robot in the team must
lie in the free space i.e. Br(pos(xti)) ∈ Wt

free. Second, trajectories must satisfy
the kinodyanmic constraints of the system. This corresponds to constraints on
maximum acceleration and jerk. Third, robots must maintain clearances greater
than 2r i.e. ||xti − xtj || > 2r

3 Approach

This section is organized as follows. In Sect. 3.1 we discuss the static and dy-
namic workspace representation. Sect. 3.2 describes the kinodynamic planner,
the dynamic obstacle avoidance procedure, the replanning algorithm, and the
decentralized planning setup.

4 Arjav Desai and Nathan Michael

Fig. 1. Dynamic workspace representation. (a) The prediction horizon is split into k
major intervals. (b) Each major interval is split into k′ minor intervals and the position
of the dynamic obstacles is predicted at each of the k′ time instances. (c) An occupancy
grid, DW

i , with the collated occupancy values of k′ minor intervals is generated for each
major interval.

3.1 Workspace Representation

The dynamic workspace Wt
d is represented via two voxelgrids denoted by S and

D that correspond to the static and dynamic components of the workspace.
Static Workspace Representation: Since the static obstacles are known a
priori, the static voxelgrid S is computed offline. Additionally we precompute
a sparse roadmap of the environment with respect to S using the SPARS2 al-
gorithm [5]. The sparse roadmap captures the free space topology and provides
approximate cost-to-go estimates to the kinodynamic planner (refer Sect. 3.2).
Dynamic Workspace Representation: The dynamic occupancy grid DW is a
four dimensional grid (cartesian coordinates x, y, and z and time t) that encodes
the spatiotemporal occupancy of the dynamic obstacles in the 3-D workspace
over a time horizon tH . Each cell in D is assigned a value, c ∈ R; 0 ≤ c ≤ 1,
which denotes the occupancy probability of that cell. Let tnow denote the cur-
rent time at which the state of the dynamic obstacles is observed and tH denote
the time at the prediction horizon. The time-period [tnow, tH] is split into k ma-
jor time-intervals and a 3D occupancy grid is maintained corresponding to each
time-interval (Fig. 1). Each time-interval is further discretized into k′ minor time
instances and the state of the dynamic obstacles is predicted for each of these
time instances (Fig. 1b). The predicted states of the dynamic obstacles are used
to update the 3D occupancy grid corresponding to that interval (Fig. 1c). Thus,
each 3D occupancy grid in DW represents the collated spatiotemporal occupancy
of the dynamic obstacles in that time interval. When multiple occupancy prob-
abilities are possible for a voxel (e.g. due to multiple dynamic obstacles), the
highest occupancy probability is assigned to that voxel.
Dynamic Obstacle Modelling and Prediction: The motion of the dynamic
obstacles is predicted via the Linear Velocity Polyhedron (LVP) model proposed
in [7]. Let H denote a halfspace in Rm, i.e., H = {p | aTp ≤ b, p ∈ Rm}. A
convex polyhedron, C, is defined as an intersection set of k halfspaces. Let the jth
halfspace at time instance t = 0 be defined as Ht0j = {p | aT

{j,t0}p ≤ b{j,t0}}.
Further, let the linear velocity of the points in C be vC . The jth halfspace of C at
t = t1 is given by aj(t1) = a{j,t0}, and bj(t1) = b{j,t0}+aT

{j,t0}vC∆t. Here, ∆t

is the time difference t1 − t0. Equations (1-2) do not account for uncertainty in

Decentralized Multi-Robot Planning in Dynamic 3D Workspaces 5

a b

Invariant Tree Reachable Tree Adjacency

Fig. 2. Figure shows (a) reachable edges that are dynamically feasible and curvature
constrained (b) cartesian projection of the reachable tree given the initial higher-order
state at the root and its alternate representation via a boolean valued adjacency vector.

the predicted motion of the dynamic obstacles. To do so, the obstacle’s geometry
is inflated over time by a constant inflation factor ve. While the equation for
aj(t1) remains the same, bj(t1) is updated as follows:

bj(t1) = b{j,t0} + (aT
{j,t0}vC + ||a{j,t0}||ve)∆t (1)

We note that the primary contribution of this work is development and anal-
ysis of a local planning representation capable to efficient motion-planning in
uncertain dynamic workspaces and thus, the LVP predictor can be replaced with
state-of-the-art prediction methodologies. We refer the reader [13] and the ref-
erences therein for a detailed exposition of various prediction mechanisms.

3.2 Kinodynamic Planner

Local Planning Representation: We summarize the key properties of the
planning representation initially proposed in our prior work [4]. The planning
representation is an invariant geometric tree, T , constructed by propagating a
geometric lattice in an obstacle-free workspace for multiple time steps. The tree
is defined by an invariant vertex set VT and a set of directed edges ET . The
initial and terminal points of a tree edge e ∈ ET are represented by e(0) and e(1)
respectively. Kinodynamic constraints are encoded in the definition of edges.

• A dynamically feasible edge is one such that for some initial higher-order
derivative sinit at e(0), a non-empty set of higher-order derivatives exists
Sfinal at e(1) such that the fixed duration time-parameterized polynomial
trajectories [6] connecting sinit to Sfinal along e do not violate the kinody-
namic constraints of the platform (Fig. 2a).

• A curvature constrained edge is one such that for some initial higher-order
derivative sinit at e(0), there exists a non-empty set of higher-order deriva-
tives Sfinal at e(1) such that the trajectories connecting sinit to Sfinal are
entirely contained within a cuboidal bounding box, B, of length l(e) and a
fixed width and height, oriented along the edge e (Fig. 2a).

• A reachable edge is dynamically-feasible and curvature constrained.

A reachable tree is then a tree that is composed of reachable edges. For any
higher-order state at the root node sinit, the corresponding reachable tree is

6 Arjav Desai and Nathan Michael

then defined by the tuple T = (V,p,a, c), where V is the vertex set in R3,
p ∈ N|VT | stores the parent ids of each vertex in the tree, c ∈ R|VT | is a cost
vector that stores the the cost-to-come to the ith vertex, and a ∈ {0, 1}|VT | is a
boolean valued adjacency (0 denotes unreachable) vector that encodes the set of
reachable edges subject to the underlying planning context such as higher-order
derivatives at the root vertex, or collisions with obstacles (Fig. 2b).

Proposition 1 Let S be a higher-order derivative set at the root vertex of
an invariant k-step tree. Let Tsi = (V,p,asi , c) represent the reachable k-step
tree of si ∈ S. The reachable k-step tree of the entire set, TS , is given by
aS =

∑
∀i, bitwise

asi . We refer to this as the merge-tree operation. If aS(i) = 1,

the path from the root to the ith vertex is composed of reachable edges and there
exists at least one si ∈ S for which this path is reachable. The proof follows from
the fact that each vertex of a tree can have only one parent. ut

Let akino
T denote the kinodynamically feasible tree corresponding to higher-

order derivatives at the tree root, astatic
T , the collision-free tree w.r.t the static

obstacles (edges in astatic
T may be kinodynamically infeasible) and let adynamic

T de-
note the collision-free tree with respect to the dynamic obstacles. The reachable
tree aT with kinodynamic and collision constraints is obtained by.

aT = akino
T � astatic

T � adynamic
T (2)

Here, � refers to the elementwise multiplication operation. We refer the reader
to our prior work [4] for details on construction of akino

T and astatic
T . Construction

of adynamic
T is discussed in the subsection on dynamic obstacle avoidance.

Online Planning Procedure: The single-robot planner constructs trajectories
from the start to the goal via a two step process that decouples geometric search
(step 1) and higher-order derivative assignment to the intermediate vertices of
the geometric path (step 2). The geometric search proceeds by incrementally
translating the invariant tree towards the goal via:
• Infer (Merge) Reachable Tree: In each iteration, a reachable tree T is

inferred given the underlying higher-order state at the root node (Fig. 3a).
The aT vector is updated such that the unreachable vertices and edges are
pruned from the tree as in Eqn. (2). After the first iteration, a set of higher-
order states may feasibly exist at the root node. This is due to the association
of multiple kinodynamically feasible trajectories with each geometric edge
(Fig. 2a). The reachable tree corresponding to the entire set is generated via
the merge-tree operation (Prop. 1).
• Select Intermediate Goal: An intermediate goal is selected from the

reachable vertices (using cost-to-go estimates from the SPARS roadmap) and
the root of the tree is translated to the intermediate goal (Fig. 3b).
• Update Derivative Graph: A directed graph structure called the deriva-

tive graph Gder updated in each iteration with the time indexed distribution
of higher-order derivatives that can feasibly exist at the intermediate vertices
of the geometric path constructed thus far (Fig. 3c and inset).

Decentralized Multi-Robot Planning in Dynamic 3D Workspaces 7

Fig. 3. Online planning procedure with invariant geometric trees

This process continues till the root node of the tree reaches the goal after
which, higher-order states are assigned to the intermediate geometric vertices by
searching for the least cost (minimum jerk) path in the derivative graph Fig. 3d.

Dynamic Obstacle Avoidance: Here, we describe the procedure to identify
the edges in the tree with a collision probability greater than pcoll and accord-
ingly update the adynamic

T vector. While this can be done via explicit evaluation
of edges for trees with a low cardinality, operating in dense multi-robot scenar-
ios typically requires a high cardinality tree as higher cardinality corresponds
to greater maneuverability. For efficient collision detection, we exploit the in-
variance of the planning representation and propose a two-stage offline-online
procedure for obstacle avoidance (Fig. 4).

Offline Stage: In an obstacle free workspace, each edge of the tree T is dis-
cretized and a time index is associated with each discrete point. We only con-
sider the time dimension up to tH seconds (the prediction horizon). Similar to
the construction of WD, we split this time horizon into k intervals. For each
interval, we construct a 3D voxelgrid where voxels marked occupied intersect
with the tree edges spatially and in time. Thus, as in DW , this gives rise to k
three-dimensional voxelgrids (Fig. 4a). Let DT denote the spatiotemporal tree
voxelgrid. In addition to constructing DT , with each occupied voxel in DT , we
associate the minimal set of edges that intersect with it i.e. if edges i, j, and k
intersect with a voxel and if i is the parent of j and k, only edge i is associated
with that voxel (Fig. 4b). This spatiotemporal voxelgrid representation and the
voxel-to-edge mapping is precomputed and used during the online stage.

Online Stage: In the online stage (Fig. 4c), all voxels in DW with occupancy
values greater than or equal to 1−pcoll are marked as occupied i.e. the occupancy
values of these voxels are set to 1. All other voxels in DW′ with occupancy values
less than 1−p are marked as free. For each of the k voxelgrids in DW′ , we search
for the set of voxels, Vcommon, that are occupied by both the tree edges in DT
and by the dynamic obstacles DW′ given the current position of the robot and
the state of D. The edges that intersect with Vcommon i.e. occ(DW′) ∩ occ(DT)
are queried from the voxel-to-edge mapping and the corresponding indices in
adynamic
T are marked unreachable. The set of unreachable vertices adynamic

T are
obtained by running Dijkstra’s algorithm from the root. All reachable edges in
the resulting invariant tree have a probability of collision less than pcoll.

8 Arjav Desai and Nathan Michael

Fig. 4. Offline preprocessing of invariant geometric trees to construct (a) spatiotempo-
ral voxel grids and (b) voxel-to-edge mapping. (c) During online operation, given the
ith slice of the dynamic workspace grid DW

i , the occupied voxels that also intersect
with the ith slice of the spatiotemporal tree voxel grid DT

i are found. The minimal
set of edges corresponding to the common voxels are queried from the voxel-to-edge
mapping (process i) and Dijkstra’s algorithm is run from the root to obtain the true
set of reachable edges (process ii).

Replanning Procedure: Let tnow be the current time, ξi be the current tra-
jectory of the ith robot in the team and DW be the most recent estimate of the
dynamic voxelgrid. The trajectory ξi is evaluated for collisions with respect to
DW in the time interval [tcurr, tH] where tH is the time at the prediction horizon
of DW . If a collision is detected either with a dynamic obstacle or with the tra-
jectory ξj of any robot in the team such that i 6= j, replanning is triggered. The
replanning procedure typically requires a finite amount of time to execute. Thus,
replanning from the current state of the robot ξi(tcurr) can introduce disconti-
nuities in position as well as higher-order derivatives of the robot state that can
lead to catastrophic failures. In order to avoid such a scenario, a state xstart ∈ Rp
that is tlookahead in the future is extracted from ξi and the robot replans from
that state. If the actual execution time is greater than tlookahead, the computed
plan is rejected and a new replanning instance is initiated. While replanning,
the single-robot planner with dynamic obstacle avoidance is executed. However,
the dynamic obstacle avoidance is only considered until tH seconds, after which,
the dynamic obstacles are ignored. After successful replanning, each robot com-
municates its updated motion plans to its neighbors in Gcomm.

Decentralized Planning Architecture: Our decentralized planning architec-
ture consists of a commander node (e.g. a human operator) that assigns labelled
goal states, F , to a subset of robots, n′ ≤ n, in the team. A workspace observer
tracks the dynamic obstacles and broadcasts the timestamped obstacle states
(position, velocity) to each robot in the team. On-board, each robot maintains
and updates the dynamic voxelgrid DW . All robots plan their trajectories syn-
chronously and communicate the computed trajectories to their neighbors in the
communication graph Gcomm i.e. an undirected graph structure that encodes the
time-varying communication topology of the multi-robot team. Two robots com-
municate if the distance between them is less than a predefined communication

Decentralized Multi-Robot Planning in Dynamic 3D Workspaces 9

radius rcomm. At each time step, each robot avoids the trajectories computed by
all the other robots in the previous time step thus guaranteeing safety.

4 Evaluation

4.1 Implementation Details and Experiment Design

The experimental evaluation was conducted using the Julia programming lan-
guage on a Lenovo Thinkpad with an Intel 4-Core i7 CPU and 16 GB RAM. The
proposed methodology is evaluated via three studies. All studies employ robots
of radius 0.1 m with a 2.6 m/s velocity limit and a 6.8 m/s

2
acceleration limit.

Study 1: Comparison of the collision-checking method with lazy evaluation [2].
Study 2: Comparison of the local planning representation with motion-primitive
trees commonly employed in state-of-the-art local planners [7].
Study 3: Decentralized planning architecture evaluation in dynamic 3D workspaces.

4.2 Results

Study 1: Evaluation of Collision-Avoidance Methodology: We compare
the proposed dynamic collision-checking methodology with lazy evaluation [2]
on six geometric trees of cardinalities |T1| = 70, 491 and |T2| = 109, 893 and
spatial coverage volumes of 4× 4× 4 m3, 6× 6× 6 m3 and 8× 8× 8 m3. We con-
duct 100 trials for each tree and in each trial a random dynamic voxelgrid DW
is generated. The objective of each trial is to select a sequence of edges in the
tree that do not collide with the occupied voxels in DW and lead the robot to-
wards a predefined goal, i.e., a feasible path selection problem. The lazy collision
checking approach (abbrv. LazyEval) employs the Forward edge selector [2] in
order to fully exploit the tree structure of the planning representation and avoid
redundant edge evaluations. Table 1 reports the mean and standard deviation of
the time required to find a collision-free path using both approaches. The pro-
posed collision-checking approach achieves significantly lower computation times
(upto 3.1 times for T1 and 3.5 times for T2) for all six geometric trees compared
to LazyEval. The low computation times (approx. 50 Hz for T2 with a coverage
volume of 8 × 8 × 8 m3) suggest viability of the proposed approach for use in
high-rate local planners typically used in dynamic workspaces. As the coverage
volume increases, the time required by the proposed method approaches that of

Table 1. Mean and S.D. of the time required (in s) to search for collision-free sequence
of edges in geometric trees of varying cardinalites and coverage volumes for 100 trials
in random dynamic voxelgrids D with 0.1 m resolution. Multipliers are shown in blue.

Cardinality |T1| = 70, 491 |T2| = 109, 893

Coverage 4× 4× 4 m3 6× 6× 6 m3 8× 8× 8 m3 4× 4× 4 m3 6× 6× 6 m3 8× 8× 8 m3

Proposed 0.007 ± 0.002 0.017 ± 0.008 0.047 ± 0.034 0.009 ± 0.010 0.019 ± 0.009 0.050 ± 0.06

LazyEval
(Forward)

0.022 ± 0.015
(3.142x)

0.042 ± 0.046
(2.470x)

0.079 ± 0.085
(1.680x)

0.032 ± 0.023
(3.555x)

0.048 ± 0.056
(2.526x)

0.102 ± 0.414
(2.040x)

10 Arjav Desai and Nathan Michael

Table 2. Comparison of the proposed planning representation (IGTree) with a state-
of-the-art planning representation MPTree in nine control environments. Table reports
the success rate (SR) and average response times (RT) for 900 trials. |T | and |U | denote
the cardinality of IGTree and MPTree respectively and d denotes the depth.

Obst. Density
A

(4.6 %)
B

(7.5 %)
C

(9.0 %)

Obst. Speed
Low

(3.0 m/s)
Medium
(4.0 m/s)

High
(5.0 m/s)

Low
(3.0 m/s)

Medium
(4.0 m/s)

High
(5.0 m/s)

Low
(3.0 m/s)

Medium
(4.0 m/s)

High
(5.0 m/s)

Metrics
SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

SR
%

RT
(ms)

IGTree (Our)
|T | = 14,763

96.2 5.9 96.2 5.5 96.2 5.5 100.0 8.5 100.0 18.0 97.3 8.0 100.0 9.5 88.5 8.3 87.3 8.2

MPTree (d=1)
|U | = 5,329

70.2 21.2 67.3 21.2 67.1 21.3 68.4 24.3 67.4 24.2 65.5 23.5 37.0 27.5 30.6 25.2 28.4 26.1

MPTree (d=1)
|U | = 14,641

72.1 60.4 69.9 59.9 69.1 81.3 69.1 98.7 68.0 77.4 66.9 94.4 36.5 97.0 29.5 100.6 27.6 84.5

MPTree (d=2)
|U | = 14,763

84.0 58.6 83.5 59.8 83.8 59.7 84.5 66.0 84.4 68.7 84.3 71.8 83.5 79.0 72.5 79.1 67.4 78.1

LazyEval but the key takeaway is that here is for volumes resembling local map
dimensions, leveraging invariant structures is beneficial as offline preprocessing
can significantly expedite online search.

Study 2: Evaluation of Local Planning Representation: We compare the
proposed representation, i.e., invariant geometric trees (abbrev. IGTree) with
control-input discretized motion-primitive trees (abbrev. MPTree) commonly em-
ployed by several state-of-the-art local planners [7]. The performance is evaluated
by studying their behavior in nine 2D environments composed of varying obstacle
densities and maximum obstacle speeds. In this study, 900 trials are conducted,
and in each trial, the initial velocity of the robot [vx, vy]T is randomly selected
from the range vx, vy ∈ [−2.5, 2.5]. The initial position of the robot is fixed at
[0.0, 0.0]T and the projected or intermediate goal is fixed at [4.0, 0.0]T . A trial
is deemed successful if the local planner can compose kinodynamically-feasible
and collision-free trajectories for a prediction horizon of 2.0 s. For this study,
success rate (abbrev. SR), response time (abbrev. RT), and solution cost (total
jerk for tH seconds) are used as comparison metrics. From Table 2 we conclude
that the proposed representation can safely tackle a wider range of dynamic local
planning scenarios with a higher success rate and lower response times than the
MPTree representation. This is because IGTree reasons over a set of higher-order
states at each geometric vertex as opposed to committing to a singular state at
each time-step as in the MPTree representation. In terms of the solution cost
(Fig. 5-e), the MPTree representation outperforms the proposed representation

a b c d e
Fig. 5. Qualitative single-horizon solutions for IGTree (a-b) and MPTree (c-d) with
d = 2 in 2D maps of varying obstacle densities.The black boxes indicate the obstacles
and the white arrows indicate the direction of motion of the obstacles. (e) Heatmap
with ratios of solution cost of IGTree compared to MPTree.

Decentralized Multi-Robot Planning in Dynamic 3D Workspaces 11

(ii) (iii)

(iv) (v)

t=1.1 t=2.3 t=3.8 t=8.1 t=13.4t=6.4

(i)

Fig. 6. (i) Snapshots of a single robot (dark green) at different time instances (in
seconds) over the course of one entire planning experiment. The robot avoids the dy-
namic obstacles in the workspace and terminates in the goal region (dark green cube).
At time 6.4 seconds, the robot replans a new trajectory from a non-stationary state
to avoid collision with one of the dynamic obstacles. (ii) Figure shows the adjusted
robot-obstacle clearance distances (observed clearance - safety limit) for different av-
erage obstacle speeds ranging from 0.5 m/s to 2.5 m/s (negative indicates collision).
(iii)-(v) Bar plots shows distribution of inter-robot clearance distances, velocities, and
accelerations across all experiments. Trajectories are dynamically feasible and safe.

as the trajectories obtained using our representation are constrained to remain
within fixed geometric lattices thus incurring a higher control effort.

Study 3: Decentralized System Evaluation in 3D Workspaces The con-
trol environments used in this study are 10 × 10 × 5 m3 workspaces consisting
of two dynamic obstacle configurations—a pillar (2× 2× 5 m3) that translates
in 2-D and a box (1× 1× 1 m3) that translates in 3-D. Forty environments with
varying obstacle density and speeds are used. The obstacle density varies from
2.2% to 30.8% (by volume) and the obstacle speed varies from 1.0 m/s to 2.5 m/s.
Ten planning experiments were conducted for team sizes of n = 1 to n = 10 each
in the given control environments (Fig. 6-i). The resulting trajectories are eval-
uated for (1) robot-obstacle collisions (Fig. 6-ii), (2) inter-robot collisions (Fig.
6-iii), (3) kinodynamic feasibility (Fig. 6-iv,v), and response times. The clear-
ance plots show that the robots maintain safe inter-robot clearance distances
and on average, maintain a clearance distance of 2.5m from the dynamic ob-
stacles. Further, based on the distribution of velocities and acceleration across
all the computed motion plans, we conclude that the motion plans adhere to
to the specified kinodynamic constraints. Representative experiment videos are
available at https://bit.ly/2VXn3in.

https://bit.ly/2VXn3in

12 Arjav Desai and Nathan Michael

5 Conclusion and Future Work

This work presents a decentralized planner and a planning representation for
multi-robot navigation in uncertain 3D workspaces. The invariant nature of the
kinodynamic planning representation allows for offline preprocessing thus en-
abling low-latency generation of kinodynamically feasible and collision-free tra-
jectories online in dynamic 3D workspaces. As part of the future research, we
intend to conceive a distributed heirarchical coordination framework composed
of long-term deliberative and short-term reactive planning processes.

References

1. Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas Roy, and
Jonathan P How. Probabilistically safe motion planning to avoid dynamic ob-
stacles with uncertain motion patterns. Autonomous Robots, 35(1):51–76, 2013.

2. Christopher M Dellin and Siddhartha S Srinivasa. A unifying formalism for short-
est path problems with expensive edge evaluations via lazy best-first search over
paths with edge selectors. In Twenty-Sixth International Conference on Automated
Planning and Scheduling, 2016.

3. Arjav Desai, Matthew Collins, and Nathan Michael. Efficient kinodynamic multi-
robot replanning in known workspaces. In 2019 International Conference on
Robotics and Automation (ICRA), pages 1021–1027. IEEE, 2019.

4. Arjav Desai and Nathan Michael. Online planning for quadrotor teams in 3-d
workspaces via reachability analysis on invariant geometric trees. In 2020 Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2020.

5. Andrew Dobson and Kostas E Bekris. Improving sparse roadmap spanners. In
2013 IEEE International Conference on Robotics and Automation, pages 4106–
4111. IEEE, 2013.

6. Markus Hehn and Raffaello D’Andrea. Quadrocopter trajectory generation and
control. IFAC proceedings Volumes, 44(1):1485–1491, 2011.

7. Sikang Liu. Motion planning for micro aerial vehicles. 2018.
8. Michael Otte and Emilio Frazzoli. Rrtx: Asymptotically optimal single-query

sampling-based motion planning with quick replanning. The International Journal
of Robotics Research, 35(7):797–822, 2016.

9. Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning for dynamic
environments. In 2011 IEEE International Conference on Robotics and Automa-
tion, pages 5628–5635. IEEE, 2011.

10. David Silver. Cooperative pathfinding. AIIDE, 1:117–122, 2005.
11. Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. Goal as-

signment and trajectory planning for large teams of interchangeable robots. Au-
tonomous Robots, 37(4):401–415, 2014.

12. Anirudh Vemula, Katharina Muelling, and Jean Oh. Path planning in dynamic
environments with adaptive dimensionality. In Ninth Annual Symposium on Com-
binatorial Search, 2016.

13. Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for mavs
in dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–783,
2019.

14. Matt Zucker, James Kuffner, and Michael Branicky. Multipartite rrts for rapid
replanning in dynamic environments. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 1603–1609. IEEE, 2007.

	Decentralized Multi-Robot Planning in Dynamic 3D Workspaces

