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Abstract— Many problems that are relevant to sensor net-
works such as active sensing and coverage planning have
objectives that exhibit diminishing returns and specifically are
submodular. When each agent selects an action local space
of actions, sequential maximization techniques for submodular
function maximization obtain solutions within half of optimal
even though such problems are often NP-Hard. However,
adapting methods for submodular function maximization to
distributed computation on sensor networks is challenging as
sequential execution of planning steps is time-consuming and
inefficient. Further, prior works have found that planners
suffer severely impaired worst-case performance whenever
large numbers of agents plan in parallel. This work develops
new tools for analysis of submodular maximization problems
which we apply to design of randomized distributed planners
that provide constant-factor suboptimality approaching that of
standard sequential planners. These bounds apply when the
objective satisfies a higher-order monotonicity condition and
when cumulative interactions between agents are proportional
to the optimal objective value. Problems including generaliza-
tions of sensor coverage satisfy these conditions when agents
have spatially local sensing actions and limited sensor range.
We present simulation results for two such cases.

I. INTRODUCTION

Many objective functions that arise in sensor planning
problems such as mutual information [1, 2], objectives for
sensing in hazardous environments [3], and various notions
of area, set, and sensor coverage [4] are submodular. In-
tuitively, submodularity implies diminishing returns when
constructing sets of sensing actions. This work explores
multi-agent planning problems with submodular objective
functions and especially variants of set and sensor coverage.
We focus on settings involving networks of large or even
unspecified numbers of agents seeking to maximize a global
submodular objective. Proposed planners perform well in
scenarios where agents have limited sensing range and have
access to spatially local sets of sensing actions.

Sequential planning strategies can extend generic optimal
and suboptimal local planners to the multi-agent domain
while retaining suboptimality guarantees in similar scenar-
ios [1–3, 5]. However, sequential planning scales poorly
when increasing the numbers of agents while the local
planning subproblems themselves may be expensive on their
own. For example, active sensing problems often feature
nearly infinite spaces of trajectories [1, 2]. At the same
time, dynamic environments and beliefs motivate real-time
planning [2] so that efficient multi-agent planning is critical
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(a) Sensing agents (b) Area coverage

Fig. 1: (a) Consider a team of robots engaged in a sensing coverage
task. Intuitively, choices made by distant agents may be decoupled. We
exploited such conditions to enable efficient distributed planning. Coupling
is quantified in terms of an inter-agent redundancy that applies to objectives
that have a higher-order property related to submodularity. (b) This work
proposes novel randomized planners and analyzes these planners for a class
of objective functions that includes area coverage objectives.

for these approaches to be effective in practice for more than
a few agents. We address this issue by proposing efficient
distributed planners that involve fixed numbers of sequential
planning steps and approach existing constant-factor per-
formance bounds on average when cumulative interactions
between agents are proportional to objective values.

While solving submodular maximization problems1 ex-
actly is generally hard, sequential algorithms often provide
constant-factor suboptimality guarantees [6, 7]. In fact, well-
known worst-case suboptimality bound of 1 − 1/e ≈ 0.632
for sequential planning with a cardinality constraint is opti-
mal over polynomial time algorithms for the value oracle
model [8] or unless P = NP for variations such as
set coverage [9]. For matroid constraints—which generalize
cardinality constraints and can model joint action spaces in
multi-agent problems—sequential planning obtains solutions
within 1/2 of optimal. More recent works [10, 11] propose
algorithms that restore a 1−1/e bound but are more compu-
tationally intensive. There has also been significant interest in
distributed algorithms for submodular maximization [12, 13],
but these distributed approaches generally operate by ap-
portioning ground set (all actions for all agents) across
processors which is intractable for large sensor networks.

Several recent works [2, 14, 15] also address the core
challenge of this work: design of parallel variants of sequen-
tial planners for multi-agent systems. Gharesifard and Smith
[14] define a class of distributed planners based on directed
acyclic graphs where agents perform greedy planning steps
using only a subset of the decisions made by prior agents.

1Specifically those that are submodular, monotone, and normalized.



Although they provide worst-case bounds on suboptimality,
Grimsman et al. [15] provide tighter results for the same
framework. However, both works obtain bounds that are
inversely proportional to the maximum number of agents
that may plan in parallel. In contrast, Corah and Michael [2]
demonstrate that such planners can be effective when it is
possible to find sets of decoupled actions while constructing
incremental solutions. However, Corah and Michael [2] only
provide a post-hoc bound, and propose an algorithm that
does not scale to arbitrary numbers of agents as some steps
remain fully sequential.

This work continues in the direction of our prior work [2]
in seeking to develop efficient distributed planners that ex-
ploit problem structure. As discussed in Fig. 1, our approach
is inspired by the intuition that distant agents may be
decoupled. We model this idea using a concept of inter-
agent redundancy which describes how much one agent’s
marginal gain can decrease as a result of ignoring another
agent. Inter-agent redundancy works in concert with a higher-
order monotonicity property referred to as supermodularity
of conditioning which implies monotonically decreasing re-
dundancies. Together, these properties enable use of pairwise
redundancy to bound the effect of ignoring an agent at any
step of the planning process which relates total redundancy
to suboptimality. The proposed algorithm randomly partitions
agents and obtains a constant-factor bound when the optimal
solution is proportional to the cumulative pairwise redun-
dancy between all agents. This condition is generally satisfied
by problems involving limited sensing range and distribu-
tions of agents with bounded density, and the approach
further admits features such as local adaptation and limits on
communication range. Finally, we prove that a generalized
variant of weighted set coverage satisfies supermodularity of
conditioning and provide simulation results for two cases,
area coverage and a probabilistic detection scenario.

II. BACKGROUND DISCUSSION

A. Sets and properties of set functions

Consider a set function f : 2Ω → R where Ω is called
the ground set and 2Ω is its power set. For convenience,
we treat set functions as multi-variate functions so that
f(A,B) = f(A ∪ B) and implicitly convert elements of
the ground set to subsets so that f(x) = f({x}) whereas
lowercase and uppercase variables represent elements and
subsets of the ground set respectively. Subscripts will be used
for indexing subsets so that X1:i = {x1, . . . , xi} ⊆ X . The
discrete derivative of a set function (or the marginal gain)
will be written as f(x|X) = f(x,X)−f(X) for x ∈ Ω and
X ⊆ Ω. A set function is non-decreasing if f(x|X) ≥ 0
and normalized if f(∅) = 0. Further, f is submodular if, for
A ⊆ B ⊆ Ω and C ⊆ Ω \B, then

f(C|B) ≤ f(C|A) (1)

which states that marginal gains are monotonically decreas-
ing. The negation of such a set function −f is supermodular
and non-increasing.

Fig. 2: This illustration depicts an example of a submodular objective where
supermodularity of conditioning does not hold and generalizes common
examples of when mutual information increases under conditioning [19].
In this example, boxes in the set C = {C1, . . . , Cn} are colored
blue or green independently and with equal probability. Sensors may
observe either end directly {Y1, Yn} or changes in color of adjacent boxes
{Y1\2, . . . Yn−1\n}, and obtain a submodular mutual information reward
I(C;Y ). Each individual observation provides one bit of information,
and pairs obtain two bits and no redundancy. This only changes when
considering all observations together: the color of the last box can be
determined by observing the first and each change in color of subsequent
boxes. Observing last box provides no additional information which violates
supermodularity of conditioning (2).

This work applies a higher-order monotonicity property
which we refer to as supermodularity of conditioning. The set
function gX(Y ) = f(X|Y ) describes how the marginal gain
for X varies under conditioning with Y and is referred to
as the conditioning function. A function exhibits supermod-
ularity of conditioning if gX is supermodular for all X ⊆ Ω.
Specifically, for A ⊆ B ⊆ Ω and C ⊆ Ω \B, then

gX(C|A) ≤ gX(C|B). (2)

Expressed in terms of f and negated, this expression takes
the form f(X|A) − f(X|A,C) ≥ f(X|B) − f(X|B,C)
which is interpreted as stating that conditioning reduces re-
dundancy as A ⊆ B. Expressions of the form f(A)−f(A|C)
will be referred to as expressing the pairwise redundancy of
A and C. Properties like submodularity of conditioning have
not yet been used extensively in the literature on optimization
of submodular functions although a few recent works study
the same and similar properties [16–18].

Weighted set cover is an example of a submodular function
that satisfies supermodularity of conditioning as will be
shown later. Weighted set cover objectives have been studied
extensively and have hardness results for sequential plan-
ning [9] and tightness results for distributed planning [15].
Such results demonstrate that satisfying supermodularity of
conditioning does not on its own impact hardness of an opti-
mization problem. At the same time, some relevant objectives
do not necessarily exhibit supermodularity of conditioning.
Figure 2 describes one such a scenario for a submodular
mutual information objective.2

B. Independence constraints and partition matroids

Optimization problems involving submodular objectives
often incorporate a constraint on admissible subsets of Ω.
Consider a constraint represented by the tuple M = (Ω, I)
where I is a collection of subsets of Ω such that X ∈ I
implies X ⊆ Ω. Most commonly considered constraints are
special cases of independence systems in which I must be
non-empty and satisfy a heredity property so that for all

2For this reason, Corollary 2.1 of our prior work [2] is incorrect. One of
our contributions is to identify sufficient conditions for an analogous bound.



X1 ∈ I then X2 ⊆ X1 implies X2 ∈ I. An independence
system is a matroid if I satisfies an exchange property so
that for all X1, X2 ∈ I such that if |X1| > |X2| there
exists some x ∈ X1 \ X2 so that X2 ∪ {x} ∈ I. Partition
matroids are especially relevant as they describe multi-agent
problems where the joint action space is a product of local
action spaces. Let {X1, . . . ,Xn} partition Ω into blocks Xi
so that

⋃n
i=1 Xi = Ω and Xi ∩ Xj = ∅ for i 6= j. Then

I = {X ⊆ Ω | |X ∩ Xi| ≤ `i} for `i ≥ 0 defines a partition
matroid.

III. PROBLEM STATEMENT

Consider a multi-agent planning problem with agents A =
{1, . . . , n} where each agent i ∈ A is associated with a set of
actions Xi which is also a block of the partition matroidM.
Agents may select at most one action so that |X∩Xi| ≤ 1 for
each joint solution X ∈ I. Further, the agents are engaged in
a sensing task with an objective f that satisfies the conditions
outlined in Sec. II-A and so seek to solve

X? ∈ arg max
X∈I

f(X). (3)

As shown by Nemhauser et al. [7] the local greedy heuristic
obtains an approximate solution Xg = {xg1, . . . , xgn} by
recursively applying a greedy maximization step,

xgi ∈ arg max
x∈Xi

f(x|Xg
1:i−1), (4)

and obtains the following bound

f(X?) ≤ 2f(Xg). (5)

IV. GREEDY PLANNING ON DIRECTED ACYCLIC GRAPHS

Applying (4) on a large network of agents is time-
consuming as each agent must wait to receive the incremental
solution from the previous agents before beginning compu-
tation. Gharesifard and Smith [14] propose a related class of
planners where agents may ignore the decisions of previous
agents according to a directed acyclic graph. Rather than
executing the planning step in (4), these planners obtain the
solution Xd = {xd1, . . . , xdn} by evaluating

xdi ∈ arg max
x∈Xi

f(x|Xd
Ni

) (6)

using incremental solutions from Ni ⊆ {1, . . . , i − 1},
the set of in-neighbors of agent i in the directed acyclic
graph. This model can be used to design planers where
distant agents do not communicate or where subsets of agents
execute their planning steps in parallel. Prior works studying
such planners examine worst-case behavior for objectives
that are submodular and monotonic [14, 15]. These fail to
obtain constant-factor suboptimality when given only a fixed
number of sequential planning steps but an arbitrary number
of agents. Instead, this work examines sufficient conditions
for a distributed planner with a fixed number of sequential
planning steps to approach the performance of a sequential
planner (5) on average. We begin by analyzing (6) based on
the redundancy of sensing actions between pairs of agents.

V. ANALYSIS USING INTER-AGENT REDUNDANCY

The performance of the distributed planner will be
analyzed by bounding decreases in marginal gains due
to failure to condition on choices by prior agents i.e.
f(xdi |Xd

Ni
)−f(xdi |Xd

1:i−1). Supermodularity of conditioning
enables derivation of bounds on such changes in marginal
gains using pairwise redundancies between elements.

Define the inter-agent redundancy graph as a weighted,
undirected graph G = (A, E ,W) with agents as vertices,
edges E = {(i, j) | i, j ∈ A, i 6= j},3 and weights

W(i, j) = wij = max
xi∈Xi, xj∈Xj

f(xi)− f(xi|xj). (7)

This connects the notion of redundancy to the multi-agent
planning problem via maximum inter-agent redundancies
which are undirected as f(xi)−f(xi|xj) = f(xj)−f(xj |xi).

Decreases in marginal gains can be bounded using the
pairwise redundancies from the inter-agent redundancy graph
using the following lemma.

Lemma 1 (Pairwise redundancy bound): Consider
disjoint subsets A,B,C ⊆ Ω. Then

f(A|B)− f(A|B,C) ≤
∑
c∈C

f(c)− f(c|A). (8)

Proof: Lemma 1 follows from the chain rule and
supermodularity of conditioning. Given an ordering A =
{ai, . . . , a|A|}, construct a telescoping sum f(A|B) −
f(A|B,C) =

∑|A|
i=1 f(ai|A1:i−1, B) − f(ai|A1:i−1, B,C).

Then, by supermodularity of conditioning (2) f(A|B) −
f(A|B,C) ≤

∑
a∈A f(a) − f(a|C). Then (8) follows by

symmetry of A and C in the expansion of the left-hand side.

The total weight of the redundancy graph will characterize
suboptimality for our approach. We will refer to a problem
defined according to (3) as α-redundant for α > 0 if

αf(X?) ≥
∑

(i,j)∈E

wij . (9)

Instances of (3) with finite objective values and numbers of
agents are all α-redundant for some α although specific val-
ues are not guaranteed in general. We will use α-redundancy
to absorb additive terms proportional to graph weights into
constant-factor multiplicative bounds in terms of α.

A. Analysis of distributed planners using inter-agent redun-
dancy

The inter-agent redundancy graph defined in the previous
section can be applied in the analysis of distributed planners
(6) using a similar approach as in our previous work [2]. Let
N̂i = {1, . . . , i− 1} \Ni be the set of preceding agents that
are ignored at step i of the assignment process according to
(6) so that the set of all deleted edges is Ẽ = {(i, j) | i ∈
A, j ∈ N̂i}. Then the planner suboptimality can be bounded
in terms of the weights of these deleted edges.

Theorem 2 (Suboptimality of distributed planning): The
suboptimality of a planner obeying (6) can be bounded

3Being undirected, (i, j) and (j, i) are the same edge.



using the cumulative weight of deleted edges as

f(X?) ≤ 2f(Xd) +
∑

(i,j)∈Ẽ

wij . (10)

Proof: Theorem 2 follows from application of pairwise
redundancy on the inter-agent redundancy graph to the
standard proof technique for sequential maximization,

f(X?) ≤ f(X?, Xd)

= f(Xd) +

n∑
i=1

f(x?i |Xd, X?
1:i−1)

≤ f(Xd) +

n∑
i=1

f(x?i |Xd
Ni

)

≤ f(Xd) +

n∑
i=1

f(xdi |Xd
Ni

)

= 2f(Xd) +

n∑
i=1

(
f(xdi |Xd

Ni
)− f(xdi |Xd

1:i−1)
)
.

(11)

The first inequality follows from f being non-decreasing, the
second from submodularity, and the third by greedy choice
according to (6). The equalities result from telescoping
sums and the chain rule. The main result (10) follows from
application of (8) and (7) to the sum in (11) and the definition
of Ẽ .

VI. RANDOMIZED DISTRIBUTED PLANNERS

Let us now apply the analysis from the previous section
to design of randomized distributed planners. A set of
agents can execute planning steps in parallel if no pair
of agents in the set shares an edge in the planner model
(6). Considering this, we construct distributed planners by
partitioning the agents and eliminating edges within blocks
of the partition and then bound suboptimality for randomly
assigned partitions. Finally, we present conditions for such
planners to scale to an arbitrary number of agents and to
admit features such as limited communication range.

A. Distributed planning on partitioned agents

Consider a planner where subsets of agents plan in parallel
according to a partition {D1, . . . , Dnd

} of agents A =
∪nd
i=1Di. In such a planner, nd corresponds to the maximum

number of sequential planning steps. Let di map each agent
i to its block in the partition so that i ∈ Ddi , and let the
total ordering of agents respect a partial ordering induced
by ordering the blocks of the partition so that i < j implies
di ≤ dj . We construct a planner (6) from the partition and
ordering of agents and blocks by eliminating neighbors that
share the same block from the complete directed acyclic
graph

Ni = {1, . . . , i− 1} \Ddi , N̂i = {1, . . . , i− 1} ∩Ddi .
(12)

Ideally, the partition would minimize the cumulative weight
of edges eliminated in the subgraphs of the blocks. However,
that is equivalent to maximizing the weight of edges outside

of the subgraphs which is the Max k-Cut problem on
the inter-agent redundancy graph. Finding exact solutions
is intractable because Max k-Cut is NP-Complete [20].
Therefore, the next section proposes randomized approaches
that produce approximate solutions.

B. Planning with random partitions

As observed by Andersson [21], a random partition obtains
a trivial nd−1

nd
by observing that edges are removed uniformly

at random. The approach presented here is similar and is
presented from the perspective of individual agents.

Consider a distributed planner as defined by (6) where
agents share partial solutions with neighbors given a par-
tition of the agents as in (12). Let each agent select its
partition index di independently and uniformly at random
from {1, . . . , ki} so that nd = maxi∈A ki. We consider
two policies for selection of ki based on the weights of the
redundancy graph (7) and a per-agent budget for additive
suboptimality γ > 0. For global adaptive planners agents
i ∈ A select from a fixed number of partition indices
proportional to the total redundancy so that

ki = nd =

 1

nγ

∑
(i,j)∈E

wij

 . (13)

With local adaptive planners ki is proportional instead to
the cumulative redundancy for that agent which may be large
compared to other agents but involves less global knowledge

ki =

 1

2γ

∑
j∈A\{i}

wij

 . (14)

Both local and global planners respect the following bound.

Theorem 3 (Suboptimality for random partitions): Given
a budget γ > 0 for per-agent suboptimality and a planner
defined according to (6) which partitions agents according
to (12) by drawing partition indices di uniformly from
{1, . . . , ki} using (13) or (14) suboptimality is bounded in
expectation as

f(X?) ≤ 2E[f(Xd)] + nγ. (15)
Proof: The expectation of the cumulative weight of

deleted edges for either planner is bounded as

E

 ∑
(i,j)∈Ẽ

wij

 =
1

2

n∑
i=1

E

 ∑
j∈Ddi

\{i}

wij


≤

n∑
i=1

1

2ki

∑
j∈A\{i}

wij (16)

where the inequality accounts for when dj > ki. That is,
when another agent j selects a partition index dj > ki
outside of the set considered by i, the corresponding edge
cannot be deleted from the perspective of agent i. For global
adaptive planners, ki = nd for all i and (16) simplifies to
1
nd

∑
(i,j)∈E wij and holds with equality. Then (15) follows



by applying (13) or (14) and substituting into the expectation
of (10) over partitions of agents.

Restating in terms of α-redundancy provides a stronger
statement that is useful when varying the number of agents.

Corollary 3.1 (Constant factor suboptimality): Problems
with fixed α-redundancy satisfy the constant-factor bound

1− ε
2

f(X?) ≤ E[f(Xd)] (17)

for ε > 0 and a budget of

γ =
ε

αn

∑
(i,j)∈E

wij (18)

by substituting (18) into (15), applying (9), and rearranging.
Corollary 3.2 (Fixed nd for global planning): Given

fixed α-redundancy, global adaptive planners (13) provide
constant-factor suboptimality for nd = dαε e sequential
planning steps which follows by rearranging (18) to match
(13).

C. Near-optimality for varying numbers of agents

In this section, we present sufficient conditions to preserve
these guarantees when increasing the number of agents.
These conditions correspond intuitively to scenarios where
agents have access to local actions and where the environ-
ment volume and rewards scale with the number of agents.

We say problems (3) with n agents exhibit β-linear scaling
for β > 0 if

f(X?) ≥ βn (19)

which expresses the condition that rewards scale with the
number of agents.

In order to express the relationship between inter-agent
distances—or the distribution of agents—and inter-agent
redundancy, define a function of inter-agent distance r :
R+ → R+ so that

wij ≤ r(||pi − pj ||) (20)

where || · || is some norm and pi,pj ∈ Rd are appropriately
defined agent positions associated with the blocks of the
partition matroid. The following theorem identifies sufficient
conditions for problems to have finite α on average and in
turn to satisfy Theorem 3 and corollaries which implies a
constant expected number of sequential steps (nd) for the
global planner design (13) and any number of agents.

Theorem 4 (Finite average redundancy): Consider a
class of problems (3) with a distribution of agents in Rd
with finite density at most ρ that satisfies linear scaling
(19) and has redundancy bounded in terms of inter-agent
distance (20) for fixed β and r. If

∫∞
0
r(s)sd−1 ds is finite,

the average value of α, interpreted as a random variable, is
also finite.

Proof: Let ρ upper bound the marginal density of agents
in Rd, and let Ad be the surface area of the unit sphere
under the chosen norm. Because the distribution of agents
has fixed maximum density ρ, an arbitrarily large numbers
of agent is equivalent to a distribution of agents that covers

the entire Euclidean space in the limit. By applying (20)
and integrating over spheres centered on pi for an arbitrarily
large environment, the expected redundancy for a given agent
is at most r̂ = ρAd

∫∞
0
r(s)sd−1 ds ≥ E

[∑
j∈A\{i} wij

]
which is proportional to the integral in Theorem 4. Treating
α as a random variable so that (9) is tight and applying (19)
we get E[α] ≤ E

[∑
(i,j)∈E wij

f(X?)

]
≤ r̂

β which is finite if r̂ is
also finite given that β > 0.

D. Limited communication range

Similar analysis can be used to analyze or design limits
on communication range. Let rmax be the maximum sensor
range so that the set of agents that are in range is Bi = {j |
rmax > ||pi − pj ||}. Then, any existing communications
graph can be readily modified by intersecting the set of in-
neighbors with the set of agents that are in range to obtain
a new set of neighbors N̂i = Bi ∩ Ni. By applying (20) to
Theorem 2, each agent then incurs at most∑

j∈A\({i}∪Bi)

wij
2
≤

∑
j∈A\({i}∪Bi)

r(||xi − xj ||)
2

(21)

additional suboptimality i.e. increase to γ in (15). Then, as
in Sec. VI-C, the expectation over the distribution of agents
is upper-bounded by ρAd

∫∞
rmax

r(s)sd−1 ds. This reduces
the problem of limited communication range to a question
of whether the additional suboptimality is acceptable and
whether a techniques such as multi-hop communication are
necessary to extend the communication range. Note that
even though the communication range can be designed to
incur arbitrarily little additional suboptimality, limiting the
communication range is not sufficient to guarantee a constant
number of sequential planning steps as agents that are within
range may depend on agents that are out of range and so on,
indefinitely.

VII. PROBABILISTIC COVERAGE OBJECTIVES

Although submodular set functions have been studied
extensively, set functions with higher-order monotonicity
properties such as what we refer to as supermodularity of
conditioning (2) have received relatively little interest [16–
18]. Before moving on to present simulation results, let us
examine one such objective which satisfies the conditions
presented in Sec. II-A. The two scenarios that we will study
in simulation involve special-cases of this following objective
which is a mild extension of weighted set cover.

Consider a general event detection or identification prob-
lem with independent, probabilistic failures. We define a
set of events E and let each event e ∈ E have value
ve ≥ 0. Each event e ∈ E and element of the ground set
x ∈ Ω is associated with an independent failure probability
0 ≤ pex ≤ 1. The expected value of identified events given a
set of sensing actions X ⊆ Ω is then

f(X) =
∑
e∈E

((
1−

∏
x∈X

pex

)
ve

)
(22)



TABLE I: Agent and sensor radii

Area Coverage Probabilistic Sensing
ra 0.226 0.247
rs 0.113 6.18 · 102

and is equivalent to the well-known weighted set cover ob-
jective in the deterministic case (pex ∈ {0, 1}). This objective
is trivially normalized and non-decreasing by inspecting the
product in (22) and is also submodular as for A ⊆ B ⊆ Ω
and C ⊆ Ω \B then

f(C|B) =
∑
e∈E

((
1−

∏
c∈C

pec

)∏
b∈B

pebve

)

≤
∑
e∈E

((
1−

∏
c∈C

pec

) ∏
a∈A

peave

)
= f(C|A).

(23)

A. Supermodularity of conditioning for probabilistic sensor
coverage

Supermodularity of conditioning and even conditions on
higher order differences [16] follow by demonstrating that
the differences are similar in form to original function.

Theorem 5: Coverage with sensor failure (22) and, by
extension, weighted set cover satisfy supermodularity of
conditioning.

Proof: The conditioning function is gX(Y ) =

f(X|Y ) =
∑
e∈E

((
1−

∏
x∈X p

e
x

)∏
y∈Y \X p

e
yve

)
. Con-

sider a new set of values v̂e =
(
1−

∏
x∈X p

e
x

)
ve and the

set function f̂(Y ) =
∑
e∈E

((
1−

∏
y∈Y \X p

e
y

)
v̂e

)
which

has the same form as f (setting failure probability to one
in Y ∩X). The conditioning function can then be rewritten
as gX(Y ) =

∑
e∈E v̂e− f̂(Y ). As submodular functions are

closed over addition of a constant, gX is supermodular and
f satisfies supermodularity of conditioning.

VIII. RESULTS AND DISCUSSION

The proposed distributed planning approach is evaluated
through two sets of simulation experiments, each using a
variant of the objective function analyzed in Sec. VII. The
first evaluates the performance of distributed planners that
use various numbers of sequential planning steps (agent
partition size nd) in an area coverage task. The second
set of experiments evaluates adaptive planning and limits
on communication range in a more complex problem with
spatially varying rewards and probabilistic sensing.

A. Common parameters of experiment designs

Several aspects of experiment design are kept constant
in each scenario. Each scenario is evaluated in 50 random
trials4 and features a large number of agents (50) so that
the proposed distributed planners utilize many times fewer
sequential planning steps than a standard sequential planner

4Unless otherwise specified, each trial features both random planners and
scenarios according to their respective designs.

Fig. 3: This figure depicts a maximum area coverage problem and a
sequential solution. Agents each have a unique color and are distributed
uniformly throughout the environment. Sensing actions (∗) are in turn
distributed uniformly within agent radii (dashed lines). The solution consists
of one selected action (?) for each agent; these actions are centered on the
translucent disks which make up the covered area.

(4). Agent positions are distributed uniformly at random over
the unit square, and each agent has a choice of 10 available
sensing actions (Xi) which are sampled from a uniform
distribution over a disk with radius ra centered on the agent
position. Although the two sets of simulation experiments
do not use the same sensor model, each is a function of
sensor radius rs. The sensor and agent radii used in each
experiment5 are listed in Tab. I. In each case, the objective
is designed to take on values no greater than one.

B. Area coverage and evaluation of distributed planning

The reward for the area coverage task is the area of the
union of discs, each with radius rs, intersected with the unit
square. In terms of the sensor model defined in Sec. VII, this
is equivalent to having a failure probability of one outside
the disk and zero inside. An example of one simulation
trial (using parameters tuned for visualization purposes) is
depicted in Fig. 3. The experiments compare distributed
planners with fixed partition sizes, ki = nd ∈ {2, 4, 8}, to
sequential planning (4) and to two naive planners: completely
random action selection and myopic maximization of the
objective over the local space of sensing actions (equivalent
to nd = 1). Figure 4 shows the results of these experiments.

The proposed planner performs well although the perfor-
mance bounds would no longer be applicable as the deleted
edge weight would exceed the maximum possible possible
objective value of one as evident in the cumulative weights
of the inter-agent redundancy graph. However, the trend

5Agent and sensor radii are set according to a normalization over the
number of agents and by using parameter search to minimize the ratio of
the average performance of myopic and sequential planning to identify hard
problem cases.
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Fig. 4: Results for the area coverage problem (Fig. 3): (a) Objective values for myopic and random planning (no coordination), the proposed distributed
planner with nd sequential planning steps, and fully sequential planning (intractable for large numbers of agents). The performance of the proposed
distributed planner approaches sequential planning given many times fewer sequential planning steps. (b) Redundancies are computed for each each pair
of agents. Sensing actions (disks) for distant agents cannot overlap resulting in many zero weighted edges, and remaining edges are distributed according
to varying degrees of overlap in potential sensing actions. (c) The total weight of the redundancy graph is largely between 13 and 17. Even though the
planners perform well, our suboptimality bounds would no longer be meaningful as deleted edge weights would exceed maximum objective values.

(a) Scenario (b) Planner result

Fig. 5: This figure shows an example of a probabilistic sensing scenario
and a sequential solution. Parameters for the scenario are identical to the
experimental trials, but the parameters for the agents have been tuned for
purpose of visualization. The goal of this task is to maximize the expected
number of successful detections or identifications. (a) For each trial, events
(x) are sampled from a mixture of Gaussians and are identified correctly with
some probability dependent on the sensing actions. (b) Agents, each shown
in a different color, are distributed uniformly throughout the environment.
Sensing actions (∗) are distributed uniformly within the agent radius (dashed
lines), and each agent selects a single sensing action (?) and successfully
identifies events according to a soft-coverage sensing model. The resulting
identification probability given selected actions is shown in the background;
identification probability is high (yellow) near selected sensing actions and,
for good selections, near the events.

in performance is similar to what would be expected for
increasing nd as the objective values for the distributed
planners approach the performance of sequential planning
approximately as 1/nd. The difference in area coverage
compared to sequential planning decreases by approximately
half each time nd is doubled and by 9.9 times from nd = 1 to
nd = 8. Overall, the performance of the distributed planner
design represents a significant improvement over sequential
planning. Given the number of agents, even the greatest value
of nd provides a 6-times improvement in the number of
sequential planning steps. Given the scalability analysis in
Sec. VI-C, similar performance can be expected for larger
problems given similar densities of agents.

C. Adaptive planning with probabilistic sensing and non-
uniform events

The goal of the probabilistic sensing task is to maximize
the value of correctly identified events (e.g. correct classifica-
tion of objects moving through the environment). For each
trial ne = 50 events, each with value 1/ne, are sampled
from a fixed Gaussian mixture, rejecting samples outside
the unit square. An example is shown in Fig. 5 although
using agent parameters more appropriate for visualization
purposes but the same Gaussian mixture and number of
events. This results in a spatially varying distribution of
reward and redundancy. The success probability of the sensor
model is e−x

2/r4s , where x is the distance from sensor to
event location. This success probability effectively amounts
to area coverage with soft edges.

This set of experiments evaluates adaptive planning and
limited communication range. The budget for deleted edge
weight per-agent for the local and global planners is set to
γ = 0.4/n = 8 · 10−3. Communication limited planners
are obtained by deleting edges from the respective instances
of the distributed planners using a communication range of
rmax = 2ra which allows for a small amount of redundancy
due to sensor range rs. Random planning is not included
in this set of experiments because it vastly under-performs
myopic planning as the problem design ensures that a large
fraction of sensing actions provide little value.

Fig. 6 shows the results of these experiments. The adaptive
planners each perform almost identically in terms of distribu-
tions of objective values and with values slightly less than for
sequential planning. As the objective and actions are highly
local, enforcing limits on the communication range has
little impact on the planner performance in terms of either
objective value or cumulative weight of deleted edges. The
global adaptive planner obtains consistent partition sizes by
averaging over all agents. In contrast with the local planners
agents sometimes select from as many as 33 partitions.
Sec. VI-C provides some discussion of mitigation strategies.
However, a mix of these strategies is desirable in order to
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Fig. 6: Results for the probabilistic sensing problem (Fig. 5): (a) The proposed local and global adaptive planners along with their range-limited
counterparts outperform myopic planning and approach the performance of the fully sequential planner (intractable for large numbers of agents) in terms
of objective values. (b) The global adaptive planner uses 4 to 10 partitions in all trials while (c) the local adaptive planner occasionally uses local partitions
sizes exceeding 20 for agents with high redundancy. (d) The cumulative weight of deleted edges is on the same order as the objective value and is below
the desired limit of 0.4. Range-limited planners are obtained by deleting edges from the associated adaptive planner at the cost of relatively little additional
deleted edge weight.

avoid computing averages over all agents.

IX. CONCLUSION

Efficiently solving submodular maximization problems on
sensor networks is challenging due to the inherent sequential
structure of common planning strategies. Whereas prior
works [14, 15] have shown that worst-case performance
degrades rapidly when reducing the number of sequential
planning steps, we show that constant-factor performance
approaching that of the standard sequential algorithm can
be obtained for the proposed randomized planner when
cumulative redundancy is at most proportional to the ob-
jective values. Toward this end, the inter-agent redundancy
graph expresses the degree of coupling between agents in
the submodular maximization problem, and functions having
supermodularity of conditioning admit performance bounds
in terms of this graph structure. The resulting bound is
readily applied to design of planners that adapt the num-
bers of sequential planning steps or have limited range for
communication.

An important area for future work is to apply these
results to the design of online planners such as for multi-
robot active sensing tasks [2]. This will involve increased
attention to timing for planning steps such as reasoning
about the impact of available planning time on anytime
planning performance. Additionally, submodular objectives
such as mutual information may not satisfy supermodularity
of conditioning. Identifying when objectives functions satisfy
supermodularity of conditioning exactly or approximately
is central to broad application of the results in this paper.
Finally, concepts such as supermodularity of conditioning
may be useful in other problems involving submodular
objectives, and such applications would be an interesting
topic for further study.

REFERENCES
[1] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing

using multiple robots,” J. Artif. Intell. Res., vol. 34, pp. 707–755, 2009.

[2] M. Corah and N. Michael, “Efficient online multi-robot exploration via dis-
tributed sequential greedy assignment,” in Proc. of Robot.: Sci. and Syst.,
Cambridge, MA, Jul. 2017.

[3] S. Jorgensen, R. H. Chen, M. B. Milam, and M. Pavone, “The matroid team
surviving orienteers problem: Constrained routing of heterogeneous teams with
risky traversal,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.,
Vancouver, Canada, Sep. 2017.

[4] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Hanrahan,
and N. Joshi, “Submodular trajectory optimization for aerial 3d scanning,” arXiv
preprint arXiv:1705.00703, 2017.

[5] N. A. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized active
information acquisition: Theory and application to multi-robot SLAM,” in Proc.
of the IEEE Intl. Conf. on Robot. and Autom., Seattle, WA, May 2015.

[6] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations
for maximizing submodular set functions-I,” Math. Program., vol. 14, no. 1, pp.
265–294, 1978.

[7] ——, “An analysis of approximations for maximizing submodular set functions-
II,” Polyhedral Combinatorics, vol. 8, pp. 73–87, 1978.

[8] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating the
maximum of a submodular set function,” Mathematics of operations research,
vol. 3, no. 3, pp. 177–188, 1978.

[9] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM
(JACM), vol. 45, no. 4, pp. 634–652, 1998.

[10] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a monotone
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